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Introduction 

The SPS agreement of the WTO requires that, in international trade, measures taken to 
protect animal, plant or human health should be based on scientific principles and not 
maintained in the absence of sufficient evidence. Countries support such measures by 
using science-based risk analysis, which in turn demands science-based assessment of the 
disease status (free or infected) of each of the trading partners. If it can be demonstrated 
that an exporting country is free from a disease, risk analysis is straightforward; the 
likelihood of importation of the disease is zero. Similarly, an importing country wishing 
to impose quarantine measures must provide evidence for its own freedom from disease.  

In the past, two approaches have been commonly used to provide the required evidence. 
The first is a structured, representative survey of the relevant population. The data are 
used to estimate the probability that the negative results of the survey would be achieved 
if the disease were present at a specified level (the design prevalence). If the probability 
is less than an agreed level, the population is considered free.  

The second approach is qualitative assessment, by a panel of experts, of multiple 
complex sources of evidence. These may include sources of non-representative data such 
as laboratory records, abattoir sampling, notifiable disease databases, etc, as well as the 
results of structured surveys of the type referred to above. Such qualitative assessments 
are more subjective and generally provide a dichotomous outcome – free from infection 
or not. This approach has been applied by the OIE and regional animal health 



organisations to assess claims of freedom at the completion of disease eradication 
programs.  

Each of these approaches suffers from significant weaknesses. Structured surveys using 
representative sampling are expensive, difficult to implement, and ephemeral in their 
applicability. Reliance solely on the results of such surveys ignores the potential value of 
all other sources of evidence. On the other hand, a qualitative assessment may consider 
all sources of evidence, but the outcome is influenced by the assessors involved, and it is 
extremely difficult to achieve a transparent and repeatable process.  

This manual presents methods for combining the advantages of both of these approaches, 
by enabling multiple sources of surveillance data (both random and non-random) to be 
used to develop a quantitative probability estimate to support claims of freedom from 
disease or infection. The methodology is presented as one possible framework for further 
development of appropriate methods in this important arena.  

The methodology presented has been developed in the context of using the negative 
outcomes of surveillance activities as evidence of freedom from livestock diseases, and 
consequently the terminology and examples are derived from this field. It is apparent that 
there are many other potential applications, in the arenas of animal health, plant health 
and human health; notably evaluation of the efficacy of different surveillance activities 
for disease detection, by estimating their sensitivities and quantifying the benefits of 
targetting.  

List of abbreviations and notation 

Symbol Term Definition and explanations 

Pr(A) 
Probability of 
outcome A 

Probability of an outcome. Sometimes referred to as 
"marginal probability" of the outcome. 

Pr(A|B) 

Conditional 
probability of 
outcome A given 
outcome B 

Probability of an outcome given preconditions. In the 
context of the scenario tree, the preconditions are the 
outcomes of each of the higher level nodes on the limb. 

Pr(A,B) 
Joint probability of 
outcomes A and B 

Probability of two or more outcomes occurring together. 

D disease or infection 
The specified disease, for which the country is claiming 
freedom. NB: "Disease" is used as a generic term. In most 
cases, D can be interpreted in terms of "infection" 

D+ diseased or infected The true status of a unit of interest is infected. 

D- 
non-diseased or 
uninfected 

The true status of a unit of interest is uninfected. 

T diagnostic test 
A single diagnostic test or a diagnostic testing procedure 
designed to classify units of interest as test positive or test 



negative. A diagnostic procedure may include more than 
one test. 

T+ test positive 
Positive outcome as defined by specific criteria of a 
diagnostic procedure for one unit of interest. 

T- test positive 
Negative outcome as defined by specific criteria of a 
diagnostic procedure for one unit of interest. 

S+ 
Surveillance 
positive 

Positive outcome from a surveillance system (or 
component) 

S- 
Surveillance 
negative 

Negative outcome from a surveillance system or 
component 

 alpha Probability of type I error. 

 Beta Probability of type II error. 

PA 
within herd 
prevalence 

Proportion of infected animals within a group, usually a 
herd. This equates to the probability that any animal 
chosen at random from this herd will be infected. 

PH 
among herd 
prevalence 

Proportion of herds with one or more infected animals in a 
specified population of herds. This equates to the 
probability that any herd chosen at random will be 
infected. 

P
* Design prevalence 

Fixed value for prevalence, at the unit or group level, used 
as the basis for declaring the herd or country free from the 
disease in question. The subscripts H and U are used to 
indicate the unit of concern. 

P
*
H 

Among-herd/group 
design prevalence 

Probability that a herd is infected, given that the country 
(or population subgroup) is infected. The hypothetical 
proportion of herds that are infected for evaluation of SSC 
sensitivity 

P
*
U 

Within-herd/group 
design prevalence 

Probability that a unit/animal is infected within an infected 
herd/group. The hypothetical proportion of units that are 
infected within infected herds/groups, for evaluation of 
SSC sensitivity 

Se Sensitivity 

The probability that an infected unit (or group or 
population) will be correctly identified as infected by a test 
or process applied to the unit (or group or population). 
Subscripts U, H etc. used to specify the infected entity 
which is tested. 

Sp Specificity 

The probability that an uninfected unit (or group or 
population) will be correctly identified as uninfected by a 
test or process applied to the unit (or group or population). 
Subscripts U, H etc. used to specify the infected entity 
which is tested. 



SeH Herd sensitivity 
The probability that an infected herd will be correctly 
identified as infected by the herd-level test or process 
applied to the herd. 

SeU Unit sensitivity 
The probability that an infected surveillance unit will give 
a positive result in the surveillance process. 

SpH Herd specificity 
The probability that an uninfected herd will be correctly 
identified as uninfected by the herd-level test or process 
applied to the herd. 

SR Sensitivity Ratio 
Ratio of actual CSe to that of a hypothetical representative 
standard for the SSC 

PrP 
Population 
proportion 

Proportion of units or groups that fall into a category (of 
units or groups) in the SSC reference population 

PrSSC SSC Proportion 
Proportion of units or groups processed in the SSC which 
fall into a category (of units or groups). 

SSC 
Surveillance System 
Component 

One component of a surveillance system for a specified 
disease or infection in a population. 

CSe 
Surveillance 
Component 
sensitivity 

Sensitivity of a SSC. 

CSeU 
Surveillance 
Component Unit 
sensitivity 

The sensitivity of a a randomly selected unit from the SSC 
for detection of disease in the population (the probability 
that a unit selected randomly from those sampled will give 
a positive result, given that the population is infected at the 
design prevalence). 

SSe System sensitivity Sensitivity of an entire surveillance system. 

RRi Relative risk 

The relative risk that the section of the population 
represented by the ith branch of a risk category node will 
be infected (at P*) relative to the population section 
represented by the lowest risk branch of the node. 

ARi 
Adjusted relative 
risk 

RRi adjusted to ensure population average relative risk is 1. 

List of Tables 

1. 2x2 table with hypothetical data  
2. Result of an evaluation study displayed in a 2x2 table  
3. 2x2 table with expected cell probabilities  
4. Sample sizes required to document disease freedom  
5. Hypothetical data for demonstration of Bayesian inference  
6. Definitions of monitoring and surveillance  
7. Data sources for branch probabilities and proportions  



8. Probability of country freedom from disease (at P*)  
9. Statuses of a (live) animal relevant for the “disease-freedom” problem  
10. Venn diagram for data in Table 1  
11. Parallel performance of multiple diagnostic tests  
12. (Positive) sequential performance of multiple diagnostic tests  
13. Observations obtained by a survey in relation to time  
14. Observations obtained by an ongoing surveillance in relation to time  
15. Six candidates for a prior distribution for the binomial parameter P  
16. Beta distributions for prior, likelihood and posterior  
17. Simplified scenario tree for Danish poultry diagnostic system  
18. Stylised scenario tree  
19. Scenario tree for a typical on-farm clinical diagnostic system  
20. Probability of freedom at P* over time  
21. Pr(Freedom at P*) over time with disease introductions  
22. Pr(Freedom at P*) for different SSe/PIntro combinations  
23. Biosecurity Australia’s risk estimation matrix  

List of Formulae 

1. Equation 1  
2. Equation 2  
3. Equation 3  
4. Equation 4  
5. Equation 5  
6. Equation 6  
7. Equation 7  
8. Equation 8  
9. Equation 9  
10. Equation 10  
11. Equation 11  
12. Equation 12  
13. Equation 13  
14. Equation 14  
15. Equation 15  
16. Equation 16  
17. Equation 17  
18. Equation 18  
19. Equation 19  
20. Equation 20  
21. Equation 21  
22. Equation 22  
23. Equation 23  
24. Equation 24  
25. Equation 25  
26. Equation 26  



27. Equation 27  

Main Concept 

Proof of "disease freedom" in the strict sense is impossible. This is due to practical 
constraints:  

• Data to support such claims are not available for all animals of the population of 
interest.  

• Methods for disease detection such as clinical, pathological, virological or 
serological diagnostic methods inherently provide limited certainty. In this 
context, false negative test results are of concern.  

• The time period of the observations and records must be considered in the 
analysis of survey or surveillance data.  

This introduction reviews and summarises the fundamental concepts and theories behind 
"disease freedom" that will be applied in later sections of this document. The learning 
objective of this section is to develop a solid understanding of:  

• the notion of disease freedom, incidence, prevalence, apparent prevalence;  
• the impact of diagnostic test properties (sensitivity and specificity) and the 

importance of unbiased, empirical estimates of diagnostic parameters;  
• the Bayesian approach applied at the level of an individual animal, a herd of 

animals or a population of animals;  
• the statistical and biological concepts of the design prevalence;  
• the statistical and biological concepts of differential risks of disease; and  
• the statistical and biological considerations in connection to the time period of 

data collection for disease freedom.  

Condition of Interest 

The term “disease” is often used as a generic expression for any condition to be detected 
in animals or other units of concern. In these notes, we shall follow this “loose” 
terminology. However, the methodology of “disease freedom” is particularly relevant for 
infectious, contagious animal diseases. Of course it is necessary to consider the important 
difference between “infection” and “disease”. Infections of animals follow a typical 
course. Incubating or immune animals appear clinically normal, i.e. they are not diseased 
however the disease agent is harboured. As a principle, infected-non-diseased animals are 
not acceptable in a country that claims freedom from the disease. From the disease-
detection point of view, such animals are problematic because they can’t be identified 
clinically.  



The immune status and other factors determine the chance that an infected animal can be 
diagnosed using direct or indirect detection methods such as virus detection or 
demonstration of specific antibodies, respectively.  

In conclusion, the technical term “free from disease” should be translated as “free from 
infection” in the context of the infectious diseases. Inherent limitations of the detection 
principles for the infection must be considered. The different statuses of animals relevant 
to the disease-freedom problem are shown in Figure 1.  

 

Figure 1. Statuses of a (live) animal relevant for the “disease-freedom” problem.  

Infection leads to the status “infected”. Depending on immune status and other factors, 

an infected animal may be in inapparent, diseased, etc. Infected animals are not 

acceptable in a country or region that claims “disease-freedom” (recovered and immune 

animals may be an exception).  

Measures of disease occurrence 

Incidence and prevalence are two different concepts of measuring the frequency of 
diseases in a population. Incidence is a measure of the occurrence of cases over a defined 
period of time. Under the simplistic scenario, a number of n animals is followed over the 
defined time period (d). An incidence rate based on count data IR is given as the number 
of new cases X during the period over the total of observed animals,  

.  

In observational studies, the observation period is typically different among animals due 
to late entries, drop-outs, losses, etc. The time under risk for each animal can be 
established and totalled (total animal time, AT). Using the number of new cases observed 
in AT, the incidence density (ID) is just  

.  

A measure of disease frequency in cross-sectional studies is the prevalence  



,  

where K and n are the number of animals found diseased and the sample size, 
respectively. The prevalence provides a snapshot of the disease situation, whereas 
incidence tells something about the disease dynamics. Incidence and prevalence are 
mathematically related. The prevalence odds, P/(1–P), is equal to the product of ID and 
the mean duration of the disease (Rothman and Greenland, 1998). Further elaboration of 
these concepts and more refined formulas (point estimates, variance estimates for 
different sampling designs) can be found in standard epidemiology textbooks.  

Investigations for documenting disease-freedom are special cases of incidence or 
prevalence studies because a zero incidence or prevalence is expected. For this reason, 
standard study designs for estimation of these parameters are not suitable. Nevertheless, 
there is an obvious analogy. A routine monitoring or surveillance programme shares the 
longitudinal aspect of an incidence study; a structured survey for documentation of 
disease freedom resembles a prevalence study.  

What we mean by “free” 

From a hypothesis testing point of view, one could define a null hypothesis  

H0: The country/region is not free of the disease.  

Based on data collected to document disease freedom, one usually wishes to reject H0 in 
favour of the alternative hypothesis  

HA: The country/region is free of the disease.  

However, it is practically impossible to prove that a whole country is “free of the 
disease”. A single infected animal in the population classifies the country or region as 
“not free”. To “prove freedom” would require that the whole population is investigated 
for the presence of the disease (“tested”) using a perfect diagnostic method. Clearly, this 
is an unfeasible task. The proof of “absolute disease freedom” seems not even necessary 
if one considers the expected spread of contagious diseases in a naïve population. 
“Freedom from circulating virus” in the context of viral diseases might be a useful 
interpretation of the concept.  

Later in the guide, the concept of the design prevalence (P*) will be described in detail. 
Briefly, the design prevalence is an alternative way of specifying the hypotheses 
mentioned above. Rather than using zero for incidence (over the observation period) or 
prevalence, one would use a small value for P* and the hypotheses become  

H0: The country/region is infected at a level at or above P*  

HA: The country/region is free of the disease or infection level is below P*  



More about the concept of design prevalence follows in later sections.  

Probability and distributions 

We consider here the basic laws for dealing with probabilities (Pr). Common sense and 
experience tells us that the probability to throw a "6" with a fair die is exactly 1/6. But 
what is the probability that an animal selected at random from the population has the 
disease in question? Or what is the probability that a diseased animal is detected with a 
diagnostic test? No theory or laboratory experiment tells us this. We have to conduct a 
survey to find it out.  

Prevalence 

Let Y be a dichotomous variable with the two levels Y = 0 for non-diseased (D–) and Y = 
1 for diseased animals (D+). The probability that the randomly chosen animal is D+ is 
called the prevalence of D,  

 

or, equivalently, Pr(Y = 1). P is an unknown quantity and can only be estimated. Assume 
we have a randomly chosen sample of n animals from the population and K are diseased 
(note that K is the sum of Y in the sample). We assume here that a perfect test is used to 
classify D. The estimate of the disease prevalence is of course  

.  

We omit the "hat" on the P, which would correctly indicate that this is an estimate, not 
the true prevalence. "Estimates" are the numerical results obtained when we evaluate a 
formula, such as K/n. The formula is called the "estimator".  

Diagnostic tests are used to estimate the prevalence and such tests are not free of errors. 
Therefore, the prevalence, as defined above, should be clearly distinguished from the 
probability of a positive test result. The latter is also called apparent prevalence (see 
below).  

Quality of estimates 

The quality of estimates has two key aspects from which other useful criteria can be 
derived: bias and variance. The bias tells us something about the central tendency 
(expected value) of the estimator. If the expected value (E) is equal to the population 
parameter, the estimator is unbiased.  



Examples for biased estimators occur in analysis of survey data. The simple proportion 
P=K/n may be a biased (pooled) point estimator of the population prevalence if the 
observations are grouped in herds or other primary sampling units (two-stage cluster 
sampling) and have unequal sampling weights. The latter typically occurs if the herd 
sizes are unequal, ie, if it is not possible to sample the same proportion from each herd. 
For such aggregated observations, the estimator of the variance of P, var(P)=P(1–P)/n, is 
also typically biased, because the observations within the primary sampling units are not 
independent. Such biases should be clearly distinguished from biases due to the study 
design or lack of randomness in the process (e.g., selection bias). The general definition 
of a bias is  

bias = E(estimator) – P.  

The variance (var) tells us something about the expected sampling variation of the 
estimator in terms of the expected value of the squared difference between E(P) and P,  

var = E[(E(estimator) – P)2].  

Sometimes it is desirable to consider both bias and variance at the same time because it 
might be advantageous to work with a biased estimator with small variance compared to 
an unbiased estimator with large variance. A combined quality criterion of bias and 
variance is the mean square error (mse),  

mse = var + bias2.  

Conditional probability 

Let's consider the disease prevalence in male and female animals as a simple illustrative 
example. The notation we can use to describe this is P1 = Pr(D+|male), read "probability 
of D+ given the animal is male", and P2 = Pr(D+|female), "prevalence of D given the 
animal is female". After the vertical bar, the conditional statement follows. Both statuses, 
disease and gender have two possible outcomes. If we sample n animals randomly from a 
population we can arrange the observed data in a 2x2 table (Table 1).  

Table 1. 2x2 table with hypothetical data.  

  Diseased (D+) Non-diseased (D–) Total 

male a = 10 b = 90 n1 = 100 

female c = 40 d = 360 n2 = 400 

  m1=50 m2 = 450 n = 500 

The estimate of the prevalence in male animals is P1 = a/n1 = 0.1 or 10%. The sample 
estimate of the prevalence is P = m1/n = 50/500 = 0.1 or 10%. We could also say 



something about the gender distribution. The observed proportion of male animals is PM 

= n1/n = 100/500 = 0.2 or 20%. The proportion of female animals is 80%.  

Both the disease status D and the gender are mutually exclusive categories. The statuses 
are also jointly exhaustive. If one animal is not D+, it must be D–, and so on. For this 
reason, we can now state that  

Pr(D+) = 1 – Pr(D–); and Pr(M) = 1 – Pr(F).  

If the probability of disease is the same in male and females; that means if  

Pr(D+) = Pr(D+|M) = Pr(D+|F)  

holds, we can say the disease status and gender are independent. In practice, it involves a 
statistical test (for example chi-square) to investigate whether the observed differences 
between P1 and P2 can be explained just by chance (sampling fluctuation). The point to 
make here is the general notion of independence. The prevalence P and the probability 
Pr(M) are called the marginal distributions of Table 1. If the two variables are 
independent of each other, it follows that the probability of selecting a male diseased 
animal can be found simply by the law of multiplication of the marginal probabilities,  

Pr(D+, M) = Pr(D+) Pr(M).  

In this notation, the comma has the meaning of "and". In the example, the estimated 
marginal probability of disease (unconditional on gender) is 10%, and the marginal 
probability of male is 20%. The probability of both features applying jointly is 10% of 
20% (or 20% of 10%), equal to 2%. The Venn diagram below (Figure 2)is a graphical 
representation of the data in Table 1.  

 

Figure 2. Venn diagram for data in Table 1.  

The cells within the table reflect the joint distribution of disease and gender. Under the 
same marginal distribution, we could have a = 50, b = 50, c = 0 and d = 400, reflecting a 
very strong dependence between D and gender. The link between conditional and 
unconditional probabilities is given by Bayes' theorem.  



Bayes' theorem 

Bayes' Theorem is a procedure for revising the probability of some event in the light of 
new evidence. Assume Bj is the event of interest and B1, B2, …, Bk are mutually exclusive 
and exhaustive outcomes. We wish to revise the probability Pr(Bj) using the observation 
that event A has occurred. Bayes Theorem can be written as  

 

The quantity Pr(Bj) is called the prior probability and Pr(Bj | A) is the posterior 
probability. The term Pr(A | Bj) is equivalent to the so-called likelihood. It is given by the 
conditional probability of A (due to the observed result of A), given Bj. The likelihood 
and the prior must be derived from independent sources of evidence. The denominator is 
a scaling factor that assures that the posterior probability totals 1 over all categories of Bj.  

Using the example above as illustration, we could be interested in the probability of 
disease (event B1 is now D+) in a female (event A is now F) animal,  

 

Bayes Theorem is applicable if we have a prior estimate of the disease prevalence Pr(D+) 
= Pr(Bj) and if we know that the likelihood of disease depends on the gender; i.e. we have 
independent information on the likelihood Pr(F | D+) and Pr(F | D–). Note that the 
posterior Pr(D+ | F) and the conditional probability Pr(F | D+) are two different things. 
The latter is required to estimate the posterior probability; it has no other immediate 
relevance in this context. If a female animal is encountered, Bayes Theorem can be used 
to find the posterior probability Pr(D+| F). In the case that gender is no explanatory 
factor, we have Pr(F|D+) = Pr(F |D–) and the formula above reduces to Pr(D+| F) = 
Pr(D+).  

Bayes Theorem cannot be applied if all information stems from one single source (in our 
case from one single 2x2 table) since it requires prior knowledge. Expressing all 
quantities with the cell frequencies a, b, c and d leads to Pr(D+| F) = c / (c+d). This 
shows that estimation of the conditional probability Pr(D+| F) from the 2x2 table is a 
simple proportion rather than a posterior probability. Therefore, other sources of data are 
required to apply Bayes' theorem. Further detailed description of such sources will be 
presented below (data sources). Bayes' theorem will be further elaborated in the context 
of diagnostic testing.  

Probability density function (PDF) 



Some PDFs, such as the normal, are widely known and applied. If we deal with 
categorical data, we need different types of PDFs. A basic idea in statistics is that we can 
use models to describe what we observe. Let's use the term "outcome" for anything we 
could be interested in observing (whether one animal is diseased, how many animals are 
diseased, how many kilograms one animal weighs, etc). The models help us to 
extrapolate from our limited data to the real world. PDFs are distribution models and 
share three characteristics.  

1. They indicate the possible outcomes of an event (yes/no for the outcome "animal 
diseased"; 0, 1, 2, …, n for the outcome "how many diseased animals"; from 10 to 
500kg for the outcome "weight").  

2. They define how likely each of the possible outcomes is using a formula that 
consists of constants and parameters. The sum of all these probabilities is exactly 
1.  

3. They can be used (in most cases) to derive the expected value (mean value) and 
the expected variation (variance).  

The mean of the PDF is the expected value of the random variable,  

m = E(X).  

The variance is the expected squared deviation of X from its mean (see above),  

var = E[ (X – m)2]  

PDF of a dichotomous variable (Y) 

For example, the diagnosis of one animal with observed outcomes Y = 0,1 to denote the 
disease status.  

1. Possible outcomes: y = 0, 1.  
2. The model is called a Bernoulli distribution with the single parameter P:  

PDF: Pr(Y = y) = P y(1–P) 1 – y where 00 = 1.  

The probability of disease is Pr(D+) = Pr(Y = 1) = P  

The probability of no disease is Pr(D-) = Pr(Y = 0) = 1–P  

The sum is P + 1 – P = 1.  

3. The expected value (mean) is P; the variance is P(1–P).  

The PDF of a binomial variable (K) 



A sample of n = 10 animals was investigated for the disease, K were found positive.  

1. Possible outcomes: k = 0, 1, 2, …, n.  
2. The model is called a binomial distribution with the parameter P and the constant 

n:  

PDF1:  

The probability of the outcome 0 is Pr(k = 0) = (1 – P)n  
The probability of the outcome K = 1 is Pr(k = 1) = nP(1 – P)n–1  
and so on for K = 2, 3, …  
The probability of the outcome K = n is Pr(k = n) = Pn  
The sum of all probabilities (for k = 0 to n) is 1.  

3. The expected value (mean) is nP; the variance is nP(1–P).  

[1] The binomial coefficient indicates the number of ways that K items can be 
selected from n items.  

Diagnostic test 

For the purpose of this course, any procedure used to classify a unit as either positive or 
negative with respect to the infection or disease of concern is referred to as a diagnostic 
test. This definition covers any device or process designed to detect a sign, substance, 
tissue change or host response. To be a test, the procedure must be better than a random 
process (e.g. flipping a coin); the test must help distinguish between affected and non-
affected individuals. Tests can be measured on dichotomous (+/-), ordinal (ordered 
response) and continuous scales. In order to derive a diagnostic decision from ordinal or 
continuous test results, a cut-off value is used to define test positive (T+) and test 
negative (T–) outcomes. Multiple tests and herd tests will be described in later sections.  

Test results should reflect the true state of disease (infection) as closely as possible but 
diagnostic misclassifications, i.e. false positive and false negative results, occur in most 
(if not all) diagnostic test procedures. Some reasons for this are given below. A 
comprehensive discussion of this topic is beyond the scope of this course.  

Technical variability: The results of repeated testing of the same sample are usually not 
identical. The degree of inherent variability can be measured within one laboratory 
(repeatability concept) or among laboratories (reproducibility concept). Quality assurance 
methods can help to keep a diagnostic process stable within accepted measurement 
errors.  

Biological variability: Quantitative diagnostic test results vary among animals with the 
same true infection or disease status as a result of biological factors (age, immune status, 
physical condition, etc.). One example is the stage of infection. Depending on the test 



principle used, infected animals are not detectable by the test during periods of incubation 
or antibody latency. The range of observed test values in truly infected and non-infected 
animals is typically overlapping. This leads to diagnostic errors and imperfect sensitivity 
and specificity (see below).  

Evaluation of diagnostic tests 

The diagnostic performance measures can be derived from the results of a test evaluation 
study. This requires that the test results and the outcomes of a reference test ("gold 
standard") diagnosis are available, matched on individuals. The results of an evaluation 
study can be summarised in a 2x2 table as below (Table 2).  

Table 2. Result of an evaluation study displayed in a 2x2 table  

    True disease state   

    D+ D–   

Test T+ a b n1 

  T– c d n2 

    m1 m2 n 

The following typical study designs are encountered in test evaluation.  

Cross-sectional 
A total of n animals is randomly selected from the target population and subjected 
to the new test and the reference method. Advantage: sensitivity, specificity and 
predictive values can be estimated as simple proportions as indicated below. 
Disadvantage: Not very efficient for rare diseases or costly reference method.  

Pre-stratified 
A number of m1 and m2 animals are selected separately from two sampling frames 
of truly infected and uninfected animals, respectively. Advantage: Efficient for 
rare diseases and suitable for experimental design. Disadvantage: Pre-
stratification often introduces a selection bias.  

Partial verification 
The new test is performed first. Different fractions of test positive and test 
negative animals are subjected to the reference test. Advantage: Efficient if 
reference method is costly or invasive. Disadvantage: Selection of individuals for 
confirmation may introduce bias.  

Complex survey design 
Cross-sectional or partial verification design combined with two-stage cluster 
sampling and/or stratification. This design occurs naturally, when populations of 
farming animals are sampled.  



The design must be considered for correct statistical inference (see details in Greiner and 
Gardner, 2000a). The basic measures of diagnostic performance are described in the 
following section.  

The data in the 2x2 table shown above can be described with two different prevalence 
measures.  

P = (a+c)/n  

is an unbiased estimate of the true prevalence Pr(D+) in the cross-sectional study design.  

AP = (a+b)/n  

is an unbiased estimate of the apparent prevalence Pr(T+) in the cross-sectional and the 
partial verification design (also see below).  

The diagnostic accuracy has two components: Sensitivity and Specificity.  

Sensitivity (Se) 

Is the probability of a positive test result (T+) given the disease is present (D+) 
(diagnostic sensitivity),  

Se = Pr(T+|D+).  

It can be estimated as relative frequency of positive test results in infected individuals,  

Se = a/(a+c).  

Specificity (Sp) 

Is the probability of a negative result (T–) given the disease is not present (D–) 
(diagnostic specificity),  

Sp = Pr(T–|D–).  

It can be estimated as the relative frequency of negative test results in non-infected 
individuals,  

Sp = d/(b+d).  

Se and Sp are important, since they are related to all other measures of the diagnostic 
performance, as we shall see in later sections. We note at this stage that Se and Sp do not 
change with prevalence 2.  



[2] Due to biological factors, prevalence may have an effect on Se and Sp but this relation is not the result 
of a formal dependency.  

Variance of accuracy measures 

Often D+ and D– animals are sampled independently (stratified sampling, see section on 
study design). In this case, Se and Sp are simple proportions (p), established using a 
sample size n. The variance is then given as  

var(p) = p(1-p)/n  

where p = Se, Sp.  

Apparent prevalence 

The apparent prevalence (AP) denotes the probability of an animal having a positive test 
result, AP = Pr(T+). A positive test result can be due to a correctly classified diseased 
animal or a misclassified non-diseased animal,  

Pr(T+) = P Se + (1–P) (1-Sp).  

Operational diagnostic test parameters 

Sensitivity and specificity are essential for a proper interpretation of test results. If 
unbiased estimates of these error rates are known, one can adjust diagnostic 
interpretations (predictive values), prevalence estimates (Rogan and Gladen, 1978), or 
risk factor estimates (Greiner and Gardner, 2000b) for diagnostic misclassification. A 
critical requirement is that sensitivity and specificity estimates are actually valid for the 
population of the intended use.  

In the context of disease freedom, reliable estimates of Se and Sp are required for two 
different purposes. For the planning of monitoring or surveillance systems, sample sizes 
must be established. Typically, a lack of sensitivity must be compensated with increased 
sample sizes. In later sections of these notes, existing surveillance schemes will be 
evaluated in terms of the sensitivity of the whole system. As diagnostic testing is part of 
the system, realistic estimates of the diagnostic parameters must be available. Evidence 
from multiple validation studies can be summarised by meta-analysis (Irwig et al., 1995). 
Latent class models were described to address the problem of a lack of reference methods 
(Enoe et al., 2000).  

Testing systems 



Diagnostic testing in practice often involves the use of more than one test before a final 
diagnosis is made.  

Multiple diagnostic tests 

Two principal versions of multiple diagnostic tests (TM) are used. In a parallel testing 
scheme, the sample is subjected to more than one test and the final diagnosis is reached 
by summarising the test results (Figure 3).  

 

Figure 3. Parallel performance of multiple diagnostic tests.  

This summary often follows a cut-off rule: "TM+ if at least c out of s tests are positive". 
More complicated rules could be useful if one of the tests is extremely specific but not 
very sensitive. The cut-off c=1 leads to the most sensitive parallel test with sensitivity 
(under assumption of independent test errors)  

 

and specificity  

 

where Sei and Spi denote the sensitivity and specificity of the ith test, respectively. 
However, a possible correlation of test errors must be taken into account. For example, if 
two serological tests are combined, it is likely that both fail in animals that have low 
antibody levels for biological reasons. Likewise, false positive results can be dependent. 
The sensitivity and the specificity covariances can be quantified as  



 

 

and be used to establish Se and Sp of the parallel test (with cut-off c=1) as  

 

 

(Gardner et al., 2000). In sequential testing, the result of a preceding test determines 
whether or not another test is done. In disease surveillance, one would typically 
encounter positive-sequential tests: the testing is continued after a positive result of the 
first screening test is obtained (Figure 4).  

 

Figure 4. (Positive) sequential performance of multiple diagnostic tests.  

The positive sequential testing strategy is typically chosen to increase the specificity of 
the multiple tests. A stopping rule (number of tests) must be defined. The positive 
sequential test has the sensitivity  

 

and specificity  

 

under the assumption of independent test errors. If the correlations are nonzero, one 
should use  



 

 

"Diagnostic testing systems" can be complex combinations of serial and parallel 
diagnostic tests, even in combinations with pooled tests and herd tests (see Herd Testing).  

Herd testing 

Test results of individual animals of one herd are often summarised to obtain a 
classification of a herd as test positive or negative. The performance of the herd 
classification process is dependent on  

• Se and Sp of the diagnostic test used;  
• n, the sample size for the herd testing;  
• N, the herd size;  
• c, the minimum number of positive individual tests to declare the herd as positive 

(herd cut-off);  
• PA, the within herd prevalence.  

Under a binomial distribution model, which is valid for small sample sizes from large 
herds, one can use the apparent prevalence  

 

to derive the herd-level sensitivity  

 

and herd-level specificity  

 

The choice of the cut-off c=1 cannot universally be recommended but leads to simplified 
formulas  

 

 



In practice, the choice of the cut-off and sample size should be optimised with regard to 
some criterion derived from SeH and SpH.  

Bayes theorem and predictive values 

The predictive value of a diagnostic test is a classical application of Bayes Theorem. 
Assume an animal is to be diagnosed for a disease with prior probability Pr(D+) = P. The 
prior probability in this context is often called the pretest probability. Its value is derived 
from the prevalence and other indicators of the disease (clinical signs, other test results) 
except the diagnostic test result.  

Positive predictive value 

The predictive value of a positive test result is the probability of disease (D+) given a 
positive test result (T+). Assume an animal tests positive and we wish to use this 
observation to find the posterior probability Pr(D+|T+). According to Bayes Theorem, we 
need the likelihood (probability of observing T+ given D+) in order to find the posterior. 
According to Bayes,  

 

The posterior probability Pr(D+|T+) is also called the positive predictive value (PPV). 
Replacing the conditional probability of the last equation with known symbols yields  

 

The interpretation of the PPV can be demonstrated using the 2x2 table shown before. We 
are only referring to the first row of the table (T+ results). What proportion of T+ animals 
(in the population) is actually diseased? The answer is clearly: PPV = a/(a+b). The 
notation in Table 3 confirms the given formula.  

Note: The data in a 2x2 table can be used to estimate the PPV as simple proportion 
a/(a+b) only if the prevalence in the study data reflects the population prevalence. This 
can be presupposed for the cross-sectional and partial verification design but not for the 
pre-stratified design.  

Table 3. 2x2 table with expected cell probabilities  

    Disease 

    + – 

Test + Se P  (1-Sp) (1-P) 



  – (1-Se) P Sp (1-P) 

Negative predictive value 

The predictive value of a negative test result is the probability of "no disease" (D–) given 
a negative test result (T–). The NPV is the post–test probability of no disease given a 
negative test result, NPV = Pr(D–|T–). In formula,  

 

or using the simplified notation  

 

It can be seen that the NPV also depends on prevalence. The negative predictive value is 
also used in an expression of the probability that a negative test result is a false negative  

 

which is of great practical importance.  

The link between pre- and post-test 

probability of disease 

The odds of the post-test probability of disease, given a positive test result can be written 
as POST(T+)=PPV/(1–PPV) or, equivalently,  

 

Using Bayes' theorem, the numerator and denominator can be re-written as  

 

where the second factor on the right hand side cancels out. The term  

 

in the last equation is called the likelihood ratio of a positive test result LR(T+) and can 
be expressed in terms of Se and Sp. The Likelihood ratio of a negative test result is  



 

More general, the likelihood ratio of any outcome X of a diagnostic procedure is  

 

All this can be summarised into an important result: The post-test odds of disease for a 
given diagnostic outcome X is the product of the likelihood ratio of X and the prior odds 
of disease (PRET),  

 

 

 

Application of predictive values in disease 

surveillance 

The predictive values can be used on the animal-level as shown above. For example, the 
positive predictive value can be written (normalising constant is omitted)  

Pr(animal diseased | animal tests positive) ∝ 
Pr(animal tests positive | animal diseased) × Pr(animal diseased) 
 
PPVanimal ∝ Se P  

Likewise, the positive predictive value of a herd test is  

Pr(herd infected| herd tests positive) ∝  
Pr(herd tests positive | herd is infected) ´ Pr(herd infected) 
 
PPVherd ∝ SeH PH  

and the positive predictive value of a country region tested is  

Pr(region is not free | surveillance positive) ∝  
Pr(surveillance positive | region is not free ) × Pr(region not free) 
 
PPVregion ∝ Sesurveillance Pregion  

Mathematically, it is not difficult to handle these three different levels of predictive 
values. Care must be taken to distinguish the unit level to which parameters refer. P and 
Se are on animal-level, SeH and PH are on herd-level and Sesurveillance and Pregion are on 



country or region level. The question is whether the necessary data and information exist 
in the context of documenting disease freedom.  

Se can be estimated from standard test evaluation studies 
P should be zero; a small design prevalence is assumed 
SeH can be derived from Se, Sp and the sampling design 
PH should be zero; a small design prevalence is assumed 
Sesurveillance can be estimated from the design of the surveillance system  

A critical parameter is Pregion, the prior probability of the region being not free from the 
disease. This issue is discussed in more detail under Calculation of the Probability of 
Country Freedom.  

Definition and legal issues 

Rinderpest is one of the few animal diseases, where internationally accepted guidelines 
on the prevalence level exist. The Terrestrial Animal Health Code 2003 states in 
Appendix 3.8.2 in connection with the Recommended Standards for Epidemiological 
Surveillance Systems for Rinderpest:  

"Annual sample sizes shall be sufficient to provide 95% probability of detecting evidence 
of rinderpest if present at a prevalence of 1% of herds or other sampling units and 5% 
within herds or other sampling units."  

In these notes, the term design prevalence denotes a set of fixed values concerning  

P
*
H, the prevalence of infected herds or other sampling units in a country or zone (among 

herd prevalence)  

P*
A, the prevalence of infected animals within infected herds or sampling units (within 

herd prevalence).  

Depending on the epidemiology of the infection, a non-homogeneous distribution of 
within herd prevalences may be relevant. The cited OIE guidelines only specify P*

H = 
0.01 and P*

A = 0.05. The design prevalence must be found by international agreement. In 
the given context, these are hypothetical values.  

Biological issues 

In an outbreak situation of rinderpest in a naïve population, the design prevalences will 
soon be reached if no control measures are taken. In endemic foci, however, the within 
herd prevalence may be substantially lower (James, 1998). Setting a low value for the 
design prevalences will allow that the infection is detected soon after the introduction 



into the non-endemic area. In an endemic area, low design prevalences will be useful to 
increase the chance of detection.  

Statistical issues and application 

The prevalence level to be detected determines the necessary sample size of a 
surveillance system or survey. The lower this level, the higher the sample size will be 
(Cannon and Roe, 1982). This will be demonstrated using the animal-level design 
prevalence P*

A, which applies to infected herds. All formulas below are approximations.  

Assuming a perfect diagnostic test and a large herd size compared to the sample size (ie, 
the binomial distribution assumption holds), the necessary sample size to detect the herd 
as infected with probability 1–α is the smallest integer, greater than the logarithm to the 
base (1–P*) of alpha,  

 

The effect of diagnostic misclassification can be taken into account using the apparent 
(design) prevalence AP* = Se P*

A + (1-Sp)(1-P*
A). The sample size is  

 

Mainly a lack of sensitivity is considered in this context. For imperfect specificity, a false 
positive classification of animals would help to correctly classify infected herds. Since 
positive test results are followed-up with highly specific tests, the overall specificity of 
the testing system can be assumed 100%.  

For small herd sizes N, a hypergeometric distribution model should be used. The required 
expected number of diseased animals is established as D*=PN, and the sample size is  

 

Under a misclassification model, the expected number of test positive cases is used, 
T*=AP*N, and the sample size is  

 

The effect of the design prevalence is demonstrated in Table 4 using the following 
values: P*

A = (0.005, 0.01, 0.05) and Se = (1, 0.95). The calculations can be done using 
the programme FreeCalc (version 1.0 beta; Cameron and Baldock, 1998a,b).  

Table 4. Sample sizes required to document disease freedom in a population (or herd) of 
200 animals with probability of 95% for three different levels of animal-level design 
prevalence  



  binomial model hypergeometric model 

P* Se=0.95 Se=1 Se=0.95 Se=1 

0.005 630 598 200 190 

0.01 314 299 164 156 

0.05 62 59 55 52 

The design prevalence is not only required for sample size calculations. In later sections, 
the concept of design prevalence will be used to estimate the sensitivity of a surveillance 
system.  

Describing differential risk 

It may be thought that the quantities P*
H and P*

A should not be the same for the whole 
country. If areas are known to be at higher risk (ie. close to endemic areas or entry points 
for imported animals), the expected prevalence in case of an outbreak may even be higher 
than the design prevalence fixed by international agreement. However, the high expected 
prevalence should not be used to replace the design prevalence for sample size 
calculations. It may be even relevant to over-sample risk areas in routine monitoring or 
surveillance. The reason is that this would allow an early detection of an outbreak, when 
prevalences are still low. Differential risk can also be associated to other factors such as 
age/birth cohort, production type and trade practices, etc. Thus, there is a need to 
recognize the clustering of a disease due to specific biological or other logical factors.  

The identification of differential risk is based on conventional epidemiological risk factor 
studies and analyses when observed data is available. Such risk factors include the 
production type but also spatial or temporal (e.g. seasonal) factors. However, observed 
data are typically not available for exotic diseases in non-endemic countries. In such 
situations, differential risks may be quantified using methods of import risk analysis. 
Geographical and other risk factors can also be studied using the information of past 
outbreaks. For example, differential geographical risks for contagious bovine 
pleuropneumonia (CBPP) were investigated in Italy using data from sporadic outbreaks 
between 1990 and 1993 (Giovanni et al., 2000). On a higher scale, geographical risk 
analyses can be used to classify countries into risk groups, as for example in the context 
of BSE. This information can also be used for differential risk estimates within countries, 
based on closeness to borders with a high-risk region, or trade relationships.  

Internal time period for analysis 

Structured surveys and ongoing monitoring/surveillance activities differ importantly with 
regard to the internal time period for data collection and analysis. In both cases, the date 
of sampling and the characteristic course of the infection in affected animals are 
important. The latter can be characterised with at least two phases.  



Latent period 
Time period between infection and the first possible detection. In case of clinical 
diagnosis, it is equivalent to the incubation period. In case of antibody serology, it 
is equivalent to the time until a detectable level of specific antibody is mounted.  

Apparent period 
Time period between onset and termination of detectability. The termination can 
be due to self-cure or (disease-related) death.  

Surveys 

A survey produces estimates of proportions. Disease events are expressed as prevalence. 
Survey results are usually considered valid for the given time point of sampling. The 
sampling period is ignored in the analysis. However, the dynamics of the infection and 
the characteristics of the diagnostic methods applied must be considered for the 
interpretation of the results. The situation is represented schematically below (latent and 
apparent periods are indicated with dashed and solid lines, respectively, Figure 5).  

 

Figure 5. Observations obtained by a survey in relation to time.  

At the time point of the survey, only animals in the apparent period can be diagnosed. A 
non-detected outbreak or introduction of the disease in the past is not relevant in the 
situation of apparent disease freedom. On the other hand, the possibility of not detecting a 
current infection could be of concern. The probability of this false negative survey result 
depends on factors such as  

• Infection lag time. The time between infection and survey. If this lag time is too 
long or too short, the outbreak will not be detected because of the apparent period 
or the latent period, respectively. An optimal lag time identifies a calendar time 
period, about which the strongest inferences can be made. The "optimal" lag time 
in terms of detectability is when the expected proportion of apparent animals is at 
its maximum. In practice, this period could be found by simulation modeling.  

• Latent period. If the latent period is very long, current non-apparent infections 
may occur and the infection remains undetected.  

• Apparent period. If the apparent period is short, infected animals will be difficult 
to detect. This period may be short for biological or other reasons, i.e. animals 
may die or be removed from the population.  



The rate at which the value of information of surveillance data declines depends on the 
characteristics of the disease in question. An extreme example for a situation where 
surveillance data can be accumulated over long periods of time is bovine spongiform 
encephalopathy (BSE). Any BSE surveillance should account for the long incubation 
period and for the possibility that exposure and infection happened at an early life stage. 
The potential public health risk is associated with the event that infected animals enter the 
food chain. Therefore, evidence for freedom from BSE in selected birth cohorts can be 
accumulated over the entire survival time of the birth cohort in the population. A recent 
study has been conducted to establish the confidence for BSE freedom in selected birth 
cohorts in Denmark4. The following factors were found to be major determinants for the 
magnitude of confidence reached with the surveillance.  

• Number of cattle subjected to BSE testing. In Denmark as in all European 
countries, the majority of tests are conducted on healthy slaughters (HS). Note 
that the value of testing HS, in terms of contribution to confidence, is low 
compared to risk surveillance streams (fallen stock, suspects, etc.).  

• Design prevalence. Only animal-level design prevalence was considered as no 
clustering of BSE within herds occurs. The design prevalence for risk animals 
was 15 times the value chosen for HS, based on empirical rate ratios in European 
countries.  

• Diagnostic sensitivity. In case of BSE, Se is a function of the age at 
exposure/infection and incubation period. Both determinants are unobserved in 
the animals tested. The stochastic modelling of Se introduced uncertainty in the 
outcome of confidence estimates.  

The Danish case study suggests that the confidence of freedom from BSE in Danish cattle 
born after March 1999 is at the order of 85 to 87%. These results are based on a design 
prevalence of 1/10,000 in HS and 15/10,000 in risk animals and age-specific Se.  

[4] Böhning and Greiner, 2005. Report of project P12 at the International EpiLab (full report available on 
request; paper published 2006).  

Ongoing surveillance 

Surveillance produces a stream of observations. The sampling can be described using 
rates (animals/time). The dynamic changes in the population and herds must be 
considered. Disease events can be described in terms of incidence density (cases per 
animal time). A surveillance activity is represented schematically below (latent and 
apparent periods are indicated again with dashed and solid lines, respectively, Figure 6).  



 

Figure 6. Observations obtained by an ongoing surveillance in relation to time.  

The size of the time window for the analysis of surveillance data (grey area in the 
graphic) indirectly determines the sample size and thus the probability to detect infections 
occurring during that time. The chronologically last time window contains the most 
recent observations but also earlier time windows may contribute valuable information. 
The value of such "historical" information depends on the disease in question. Methods 
were suggested to discount such observations (Schlosser and Ebel, 2001). In an ongoing 
surveillance, infections can be detected as soon as infected animals become apparent. 
Therefore, ongoing surveillance is required when there is continuous risk of outbreaks. 
The factors that determine the probability of not detecting an outbreak in a surveillance 
program are similar to those given for the survey. An important difference is that the 
infection lag time is here defined as the time between analysis of the surveillance results 
and the infection.  

Statistical evidence from surveys and 

surveillance 

The statistical evidence from surveys can be established using standard methods 
developed for this purpose. The statistical evidence from ongoing surveillance activities 
are usually analysed with statistical methods designed for surveys. For example, the 
cumulated sample size over a time window is treated in the same way as a survey sample 
size.  

For illustration, we assume that the sampling rate (i.e. animals tested per week) is 
constant over time5. The choice of a time window is therefore linked to the choice of the 
sample size for statistical analysis. It would be tempting to declare long time periods, e.g. 
one year, as time window in order to attain a large power. The choice of an optimal time 
window for analysis of surveillance data is an interesting but yet unresolved 
methodological problem. The followings aspects should be considered when time 
windows are to be defined.  

• The question of surveillance must be addressed clearly. Is it required to make a 
statement about freedom form disease at one given time point (e.g. date of 
request)? Or is it required to make a statement about disease freedom over a 



longer period (which would be sensible for infections with long incubation 
period)?  

• What is the relative value of negative surveillance results obtained in the past for 
the current probability of being disease free? It seems logical that the latent period 
and apparent period are important factors here.  

• What minimum window size should be used to obtain sufficient statistical power?  

[5] If the sampling rate is not constant over time, this should be considered in the analysis.  

Documenting evidence for disease 

freedom in small herds 

Standard statistical methods for documenting disease freedom presuppose that the 
population and herd sizes are large. However, a problem to reach acceptable confidence 
may occur when herd sizes or population sizes are small. Obviously, typical values for 
animal-level design prevalence are not directly applicable for small herds. Consider for 
example a herd of size 10. The smallest possible non-zero prevalence is 1/10 or 10%, 
which may well be greater than the nominal design prevalence. In the following, we 
briefly outline the special situation encountered when freedom from disease is to be 
documented for small herds6. We assume throughout this section that all animals of such 
a small herd are selected for diagnostic classification.  

We consider first the herd-level sensitivity, which is given as  

SeH = 1 - (1-Se)m ≥ Se,  

where m denotes the number of truly diseased animals in the herd. It can be seen that the 
animal-level Se is the lower bound of the herd sensitivity and applies if there is exactly 
m=1 infected animal present in the herd. A useful working definition of a small herd is 
that the expected number of infected animals is less than 2, given such a herd is infected. 
Equivalently, herds smaller than 2/P*

A. For example, using the within-herd design 
prevalence 5%, herds smaller than 40 can be considered small with the justification that 
infected herds would contain only a single infected animal. From the definition follows 
also that SeH = Se for small herds.  

The confidence about freedom from diseases in the stratum of small herds will be based 
on a sample of h small herds and can be given using a binomial (bin) or alternatively by a 
Poisson (poi) model:  

 

 



where r = hP*
H is the Poisson rate parameter. For the scenario of Se = 0.8 and P*

H = 0.02, 
we obtain a confidence of Cbin = 0.918 and Cpoi = 0.916. It can be shown by simulation 
that the binomial model fits better than the Poisson model (smaller deviations between 
predicted and true confidence), whereas the Poisson model is more conservative (it fails 
less frequently to yield the nominal confidence level).  

The required sample size h can be established for the binomial model as the smallest 
integer greater than or equal to  

log(1-C) / log(1-P*
HSe).  

The sample size according to the Poisson model can not be given in a closed form but can 
be computed using numerical optimisation (EXCEL spreadsheet available from the 
authors). For the scenario of Se = 0.8 and P*

H = 0.02 and a required confidence of 95%, 
the sample size should be 186 and 188 according to the binomial and Poisson model, 
respectively.  

[6] The topic is elaborated in more detail by Greiner and Dekker (2005).  

Bayesian inference 

Bayes theorem can be used for statistical inference. This will be shown using estimates of 
proportions. A typical situation is as follows. We have a prior assumption or knowledge 
about a parameter P  

 

This implies that we regard P quasi as a random variable with a probability distribution 
attached to it. We observe some data X that can be described with a probability model 
involving the parameter P. The likelihood L  

 

indicates the probability of observing X given the parameter P. The probability of P 
given the prior and the data is now called the posterior distribution of P,  

 

The denominator is often omitted and therefore ([ means “proportional to”)  

 

Example  



Assume 100 swine from four small herds are gathered at a slaughterhouse. The number 
of swine from the herds i=1,…,4, is n1=10, n2=50, n3=30 and n4=10, respectively. 
Unfortunately, the swine are not labelled and cannot be assigned to one of the four herds. 
Assume, we know that the disease prevalence in the four herds is P1=0, P2=.2, P3=.4 and 
P4=1. The first swine is slaughtered and found to be diseased (X=1). What is the prior and 
posterior probability that this swine originates from farm 1, 2, 3 or 4?  

The prior probability is given by the fractions Pr(Pi) = ni/100. The likelihood is given by 
the Bernoulli density  

 

For X=1 (one data point), the likelihood reduces to Pr(X | Pi) = Pi. The posterior 
distribution of P is  

 

The denominator on the right hand side is the summation of the likelihood over the 
complete range of Pi, in this case a list of four discrete values. Table 5 below shows that 
this denominator just serves as a scaling factor to assure the posterior distribution sums to 
1 as in all well-behaved PDFs. The important information is the product of the likelihood 
and the prior (column 4). We can see how X has changed our prior assessment (column 
3: pig is most likely from farm 2 with P2=0.1) to the posterior assessment (column 5: pig 
is most likely from farm 3 with P3=0.5).  

Table 5. Hypothetical data for demonstration of Bayesian inference.  

Farm i Pi 
Prior  

Pr(Pi) 
Likelihood x Prior 

Pr(X=1 | Pi) 
Posterior 

Pr(Pi | X) 

1 0 0.1 0.00 0.000 

2 0.1 0.5 0.05 0.167 

3 0.5 0.3 0.15 0.500 

4 1 0.1 0.10 0.333 

It makes sense that the posterior for farm 1 is zero. If we know farm 1 is disease-free, the 
probability that the diseased animal is from farm 1 is zero. The example of a discrete 
prior is somewhat artificial because it is a very strong assumption that P can only assume 
four discrete values. Usually one would rather use a continuous prior. This approach is 
central to the application for diagnostic tests and will be described in the next section.  

The beta prior for proportions 



We assume that we have a prior distribution of the binomial parameter P. This prior PDF 
should have the following properties  

• The support range should be from 0 to 1 (usually; but not wider).  
• It should be continuous.  
• It should be possible to obtain this PDF based on study data such as K/n.  
• It should be possible to obtain this PDF using expert opinion.  
• It should be possible to update the prior PDF with new data or new expert 

opinions.  
• It follows that the posterior and the prior PDF should be from the same family of 

distributions.  

All these requirements are met by the beta distribution.  

 

where the fraction, which is the inverse beta function, is sometimes omitted because it 
doesn’t include P. For the beta distribution we have the mean  

m = a/(a + b)  

and variance  

s
2 = ab/((a + b + 1)(a + b)2).  

How to get the prior? 

Option 1 
We can use a “conservative” approach and assume that we don’t know anything 
about P. An uninformative (“flat”) prior with the coefficients a=b=1 (prior 1 in 
graph below) reflects this situation. Note that the Beta(1,1) is identical to the 
continuous uniform distribution over the range [0,1]. In a sense, this is a strong 
assumption, because we are saying that every value for P between 0 and 1 has 
exactly the same plausibility.  

Option 2 
We could use study data such as K/n to obtain the coefficients 
a = K + a’ 
b = n – K + b’ 
where a’ and b’ denote the coefficients of the “prior of this prior”, usually 
a’=b’=1. Taking the pilot study results K/n=2/10 as informative prior, we would 
obtain the coefficients a=3 and b=9 (prior 2).  

Option 3 



Assume only the parameter estimate P=0.4 and the standard error s=0.07 is given 
in a study. We can use the formulae for mean (m) and standard error (s) as above 
and obtain the corresponding  

 

 

in our case, a=19.2 and b=28.8 (prior 3).  

Option 4 
Using the additive properties of the beta distribution, we can combine the priors 2 
and prior 3 into a=22.2 and b=37.8 (prior 4).  

Option 5 
We can translate expert opinion about the probability of P into a beta prior. Since 
the beta is defined by two parameters, we only need two orientation points to 
derive the PDF. For example, we could ask  

-What is the most likely value (m) of the parameter P?  

-What are the limits of the interval in which the P is located with 95% certainty?  

Example  

Our expert says, the most likely value for P is 30%. She is 95% sure that P is within the 
range of 20% to 40%. Recovering the parameters a and b from the 2.5th, 50th and 97.5th 
percentile can be achieved numerically. For example, one can find values a and b such 
that the difference between the given percentiles and the corresponding values of the 
cumulative PDF becomes minimal. This methods yields a=23.7 and b=54.9 (prior 5). See 
also Suess et al. (2002) for details of deriving beta distributions for a given mode and 
single percentile (eg 95%).  

Option 6 
Other approaches to summarise and quantify prior study data can be developed 
from the principles of meta-analysis. The combination of expert opinions can be 
done by weighting, iterative review to consensus (delphi-technique) or discussion. 
One can also refrain from solving discrepancies and use the range of responses in 
a sensitivity analysis (how much changes the posterior depending on the choice of 
the expert). In our example, we can seek to combine the results of the two studies 
with Beta (22.2,37.8) (prior 4: Beta) with the expert opinion (prior 5). We can 
express the latter prior in terms of K and n as  

K = a-1  
n = a+b-2.  



This yields the values K=22.7 and n= 76.6, which reflects the expert certainty. Updating 
yields the new coefficients a= 22.7+22.2=44.9 and b=53.9+37.8=91.7 (prior 6). This is a 
new prior that summarises all available information described above.  

Bayesian inference provides a flexible tool to incorporate various sources of evidence and 
is appealing – at least from the pragmatic point of view. However, it should be noted that 
the approach is sometimes criticised (the conflict between “frequentist” and Bayesian 
statistics). The selection of the prior is in principle subjective. Any use of priors (from 
experts or based on data) should be governed by the principles of  

• science-based assessments (coherence with scientific knowledge);  
• transparency and full documentation of methods including reasoning about best-

case or worst-case scenarios; and  
• using reference priors (agreed value or even a non-informative prior, best-case, 

worst-case) for reporting likelihood-based results and analysis of their impact by 
sensitivity analysis.  

 
Figure 7. Six candidates for a prior distribution for the binomial parameter P  

(see text).  
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Obtaining the posterior 

The prior (what we know before) times the likelihood (what the data tell us) gives us the 
posterior (prior knowledge updated with the new information). We consider again the 
binomial parameter (proportion) P. The likelihood of the data K/n is given by the 
binomial distribution (see previously). If the prior is given in terms of a beta distribution, 
this will lead (as can be shown by algebra) to a posterior distribution which is also beta. 
This is meant by the expression that the beta is the conjugate prior to the binomial. It is 
not a must to select a beta prior but it is quite nice if the posterior remains a beta and can 
be used as prior for the next step of updating.  

Pr(P | X) [ Pr(P) Pr(X | P)  

Posterior [ Prior Likelihood  

Beta(K+a,n-K+b) [ Beta(a,b) Bin(n,K)  

Example  

Consider the prior that summarises all the evidence described above (prior 6), which is 
expressed as a Beta(44.9, 91.7). Assume we have now the study data K/n= 21/50. 
Updating the coefficients yields a=21+44.9=65.9 and b=29+91.7=120.7. The posterior is 



now given as Beta(65.9,120.7). See Figure 8 for graphic representations of these 
distributions.  
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Figure 8. Beta distributions for prior, likelihood and posterior  

In this example the prior has been very influential. The way, the prior is generated should 
always be reviewed very critically.  

The posterior distribution can be summarised in many ways, e.g. using the mean, mode, 
percentiles, etc. In Bayesian inference it is legitimate to state that the true parameter is 
within the range of the (1-p)th and (p)th percentile with probability 1-2p, which is not 
possible for the confidence interval based on frequentist analysis. The Bayesian version 
of the CI is therefore called “credibility interval” to avoid any confusion between the two 
concepts.  

Markov chain Monte Carlo (MCMC) 

Practical applications of Bayesian inference can be much more complex than the example 
above. One may want to work with non-conjugate priors and with combinations of 
likelihood and priors that cannot be easily solved analytically. A practical problem is 
often the integration of the joint probability of the data and prior (denominator of Bayes 
formula). MCMC is a very powerful and flexible solution to such problems. With the 



(currently) free software WinBUGS (Gilks et al., 1996; Spiegelhalter et al. 1999) the 
application of MCMC is relatively straightforward. However, it is strongly recommended 
to seek support by a statistician when using the technique. BUGS stands for “Bayesian 
inference using Gibbs sampling” and it is the most commonly used platform for MCMC 
analysis. A Windows-based version is also available free of charge.  

Surveillance, Monitoring and Surveys 

Disease monitoring describes the ongoing efforts directed at assessing the health and 
disease status of a given population. Sampling of individuals from the population to 
assess disease or health status may be ongoing or repeated. The disease may be specific 
infectious diseases, specific production diseases, or disease/health in general. The 
population may be defined at the national, regional, or herd level. For an alternative 
definition see Table 6.  

Disease surveillance is used to describe a more active system and implies some form of 
directed action will be taken if the data indicate a disease prevalence or incidence above a 
certain threshold. Similar to disease monitoring, sampling of individuals from the 
population to assess disease or health status may be ongoing or repeated and the 
population may be defined at the national, regional, or herd level. Surveillance is usually 
directed at a specific disease. Disease surveillance systems require three components:  

• defined disease monitoring system  
• defined threshold for disease level. (pre-defined critical level at which action will 

be taken)  
• pre-defined directed action (interventions)  

The term “surveillance” was first used during the French Revolution and it meant “to 
keep watch over a group of persons thought to be subversive”. The term has been used 
extensively by epidemiologists and other animal health professionals in the context of 
monitoring and controlling health-related events in animal populations. Disease 
surveillance is the key to early warning of a change in the health status of any animal 
population. It is also essential to provide evidence about the absence of diseases or 
determine the extent of a disease that is known to be present. The two terms 
“surveillance” and “monitoring” are often used interchangeably in animal health 
programs. Animal disease surveillance is watching an animal population closely to 
determine if a specific disease or a group of diseases makes an incursion. Monitoring of 
animal diseases focuses on identifying a disease or a group of diseases to ascertain 
changes in prevalence, and determine the rate and direction of disease spread. Therefore, 
monitoring by definition lacks action to prevent or control a health problem. Surveillance, 
on the other hand, includes an action to prevent or control the health problem that is 
being monitored. In actual field situations, monitoring usually follows early reaction 
should surveillance activities indicate introduction or spread of a disease. Many of the 
approaches used to implement monitoring can be used for surveillance and vice versa. In 



practical terms, the distinction between these two terms often becomes blurred. The 
differentiation, however, pertains more to the objectives than the approaches applied.  

The term “survey” is used to indicate an investigation or a study in which information is 
systematically collected for a specific aim or conceptual hypothesis. The time frame for 
this type of investigation is a specific and usually short period of time. This is in contrast 
to surveillance and monitoring which involve the on-going systematic collection of data 
and information. Surveys are more frequently used to answer a specific research question 
oriented toward a scientific and exploratory purpose. Approaches used for survey studies 
are similar to those used for surveillance and monitoring. In concept, a series of surveys 
can be considered as a monitoring system that may transition into a surveillance system if 
action is taken to prevent or control the disease. Therefore, the three terms “surveillance”, 
“monitoring”, and “survey” share several common components and hence, it is logical to 
consider them as a single topic for the purpose of these notes.  

Some authors have proposed the use of the term “monitoring and surveillance system” 
(MOSS) to summarize the concepts and approaches (Stärk, 1996; Noordhuizen et al., 
1997, Doherr & Audigé, 2001). In that context, “monitoring” describes a continuous, 
adaptable process of collecting data about disease and their determinants in a given 
population, but without any immediate control activities. “Surveillance” is a specific case 
of monitoring where control or eradication measures are implemented whenever certain 
threshold levels related to the infection or disease status have been exceeded. By 
definition, surveillance is therefore part of any disease control program (Noordhuizen et 
al., 1997; James, 1998).  

Table 6. Definitions of monitoring and surveillance from three textbooks on veterinary 
epidemiology.  

Textbook Monitoring Surveillance 

Martin et al. 
1997 (page 
259) 

Animal disease monitoring 
describes the ongoing efforts 
directed at assessing the health 
and disease status of a given 
population. 

The term “disease surveillance” is 
used to describe a more active 
system and implies that some form of 
directed action will be taken if the 
data indicate a disease level above a 
certain threshold. 

Thrusfield, 
1995 (page 22) 

Monitoring is the making of 
routine observations on health, 
productivity and environmental 
factors and the recording and 
transmission of these 
observations. 

Surveillance is a more intensive form 
of data recording than monitoring. 

(Page 358 and 
360) 

The routine collection of 
information on disease, 
productivity, and other 
characteristics possibly related to 

An intensive form of monitoring 
(q.v.) Designed so that action can be 
taken to improve the health status of 
a population, and therefore 



them in a population. frequently used in disease control 
campaigns. 

Noordhuizen et 
al. 1997 (page 
379) 

Monitoring refers to a continuous, 
dynamic process of collecting data 
about health and disease and their 
determinants in a given population 
over a defined time period 
(descriptive epidemiology). 

Surveillance refers to a specific 
extension of monitoring where 
obtained information is utilized and 
measures are taken if certain 
threshold values related to disease 
status have been passed. It, therefore, 
is part of disease control programs. 

Data collection for Surveillance 

One of the main components for any surveillance is the collection of data, which can be 
classified as either passive or active. Unfortunately, some authors have generalized these 
terms as labelling surveillance as passive vs. active (Lilienfeld & Stolley 1994). A 
surveillance system cannot be passive if an action is part of its definition.  

An active collection of data for surveillance or survey is referred to as the systematic or 
regular recording of cases of a designated disease or a group of diseases for a specific 
goal of monitoring or surveillance. A population by specific location and/or time period 
is usually defined for the system. This should provide each individual within the defined 
population with a known and often equal chance of being selected. The identification of 
such appropriate population depends on the event of interest, its expected prevalence, and 
the available diagnostic tests.  

Information about the health-related event might be collected from owners by interview 
or mail. Biological samples might be collected during farm visits, at abattoirs, knackeries 
or carcass rendering plants. In addition, the screening of animal medical records, either 
the files or electronic databases, for specific entries, or biological sample banks for 
specific pathogens or lesions, can be considered part of the active collection of data for a 
surveillance system. Examples of such a system include the tuberculosis and brucellosis 
programs that is routinely performed in several countries of the world, infectious bovine 
rhinotracheitis (IBR) and enzootic bovine leucosis (EBL) sero-surveys in Switzerland 
(Stärk 1996), abattoir screening for contagious bovine pleuropneumonia (CBPP) in 
Switzerland (Stärk 1996), BSE screening of fallen stock and emergency slaughtered 
cattle in Switzerland and Europe (Doherr et al. 1999 & 2001) and of “downer cows” in 
the United States (http://www.aphis.usda.gov/oa/bse). Other examples would be the 
Scrapie surveillance in the United Kingdom (Simmons et al. 2000), and postal surveys 
for scrapie in the UK, the Netherlands and in Switzerland (Morgan et al. 1990; Schreuder 
et al. 1993; Hoinville et al. 1999 & 2000; Baumgarten et al. 2002). Some national 
surveillance system includes mail or interview questionnaires as well as the collection of 
biological samples for laboratory testing (Traub-Dargatz et al. 2000a & 2000b; Kane et 
al. 2000; Wagner et al. 2000).  



A major disadvantage of the active data collection for surveillance is that it is very costly 
when the occurrence of the target disease is rare. The lower the disease prevalence, the 
larger the sample size required for detection. Once the prevalence becomes very low (< 
0.1%), it often is not feasible to further increase the sample size due to funding 
constraints, limitations in the working capacity of diagnostic laboratories or simply 
because of limitations of the chosen test system: the tests are not sensitive and specific 
enough to distinguish between zero and very low prevalence levels. The situation 
changes from low prevalence to the probability of disease freedom. Instead of prevalence 
estimation, the focus is now on the identification of a health-related event if it occurs in 
the defined population above the design prevalence. An example where all animals in a 
defined population are tested is the mandatory fallen stock surveillance for BSE in 
Europe. Within this program, due to the expected very low prevalence of detectable cases 
of < 0.1%, all fallen cattle older than 24 months have to be examined. Between January 
2001 and April 2002, the average prevalence in this “high-risk” target population was 
approximately 0.05% - or one case per 2000 samples tested 
(http://europa.eu.int/comm/food/fs/bse/testing/bse_results_en.html).  

The passive collection of data involves the reporting of clinical or subclinical suspect 
cases to the health authorities by health care professionals at their discretion (Lilienfeld 
& Stolley 1994). Therefore, the validity of the system depends solely on the willingness 
of these professionals to secure the flow of data. In veterinary medicine, the passive 
collection of data can be influenced by the awareness and level of knowledge of a 
particular disease among veterinary practitioners and producers or owners of animals. 
Another important component for this type of data collection is the availability of a 
diagnostic laboratory scheme to support and confirm cases. The main limitation of 
passive data collection is inconsistency in the data collection for different diseases and 
among communities that provide the data. Thus, a comparison of various passively 
collected surveillance data should be approached with caution. Disease awareness, 
educational level of the surveillance data providers (practitioners, regulatory 
veterinarians, and owners/producers), and the nature of the disease under the surveillance 
are the major elements in the effectiveness of the surveillance. For instance, a disease 
with a high case-fatality rate may be reported more frequently than a disease with a low 
case-fatality rate. A disease with more public awareness (for example, that has had 
extensive advertising or educational programs) may be more likely to be reported as 
compared to a disease with less awareness, even though its true prevalence and incidence 
are lower. It should be also noted that the use of the passive collection of data would not 
ensure the early detection of a disease.  

Passive collection of data for surveillance can identify a change in a pattern that may 
warrant further investigation. Typically then an active method of collection of data can be 
implemented. For instance, the first few BSE cases found in UK at the initial epidemic 
were reported using the passive collection of data for surveillance that was not designed 
specifically for collection of BSE cases. Then, a surveillance program was implemented 
to actively collect data for BSE.  



Some countries have used the term “notifiable animal diseases” for those diseases that are 
required by law to be reported. Most of the OIE List A and specific zoonotic diseases fit 
the criteria to be on the notifiable list. Although these notifiable diseases by definition 
should require active collection of data for surveillance, most countries have used passive 
collection of data for surveillance. The main reason for this is the lack of a well-planned 
study design to maintain and actively detect cases for these diseases.  

Other authors (Dufour & Audigé, 1997; Doherr & Audigé, 2001) have classified 
surveillance activities by the method of data collection into three classes (passive, active 
and sentinel networks). Baseline data collection was considered a subcategory of passive 
collection. In our opinion, a disease trend which is determined by surveillance is different 
from baseline data. Disease trends can change overtime and the use of the term baseline 
data in this context may be misleading. The term “sentinel networks” is a method to 
actively collect data for surveillance using a selected sample to represent the population.  

Targeted Surveillance 

The term “targeted surveillance” is becoming popular and it principally refers to focusing 
the sampling for the surveillance on high-risk population (i.e., targeted population) in 
which specific commonly known risk factors exist. An example of a target population is 
fallen cattle stock in Europe because this high risk group of cattle has more BSE than 
otherwise healthy cattle. Another target population is the specific hamburger meat 
processed in large quantities, which is associated with a greater risk of Escherichia coli 
O157:H7 than in unprocessed meat.  

The main purpose of implementing this surveillance approach is to increase the efficiency 
of the system. This design is appropriate when the following two conditions exist: the 
disease under consideration is less common in the general population than in the targeted 
group and specific risk factors are established or known. Therefore, prior knowledge 
about the disease and its epidemiology is required before this design can be considered. 
Occasionally, targeted surveillance is used to ensure the absence of a specific disease 
from a highly susceptible population. For instance, the purpose of the surveillance of 
downer cows and cattle with suspected neurological signs in the USA for BSE is mainly 
to provide evidence of the absence of BSE.  

Targeted surveillance is an effective design to purposely implement an action that can 
reduce the impact of a disease rapidly. An example of this approach is nosocomial 
infection surveillance in a veterinary teaching hospital in which equine colic cases are 
targeted for Salmonella surveillance. This is due to the fact that these cases are more 
susceptible to this infection than other hospital admitted cases (Tillotson K et al., 1997 
and Kim et al. 2001).  



The impact of the change in trade 

regulations on surveillance planning and 

implementation 

In a country, the demand for scientifically reliable surveillance system has coincided with 
a reduction in budgetary and human resources among the government veterinary services. 
Several countries therefore, have attempted to identify the most efficient methods to 
satisfy the national and international requirements for animal health. During the last 
decade, numerous methods and approaches for surveillance in animal health programs 
have been discussed or proposed. The most important outcome from this type of 
exploration is the determination of absence of the disease or its agent from a country i.e., 
when prevalence of a disease is at or near zero. The objective of this type of surveillance 
is to provide evidence (with known confidence) that a disease or pathogen, if present in a 
zone or country, is present at or below an acceptably low (practically undetectable) 
prevalence. While it will probably continue to be commonly used, the term ‘freedom 
from disease’ is potentially misleading. ‘Freedom’ implies complete absence, which is 
analogous to the now unacceptable concept of ‘zero risk’.  

Current approaches generally involve the compilation of evidence from a range of 
sources, and the use of this evidence to put forward a convincing argument about a 
country’s disease status. One source of evidence that is commonly used or demanded is a 
structured statistically valid survey. The primary advantages of the use of surveys are that 
well-established theory and methodologies exist, and they are able to produce a 
quantifiable probability estimate for the presence of disease. International regulations 
increasingly demand that the level of proof of disease status meets quantitative standards, 
e.g. that the probability of the presence of disease at a prevalence in animals of 0.2% or 
greater is less than 1%. Other sources of evidence that may be used include passively 
collected data, an assessment of the quality of the veterinary services, livestock 
movement history, geographical and environmental factors, abattoir monitoring, sentinel 
herds, etc.  

It has become clear that there are a number of problems with this approach. Structured 
surveys are often too expensive or impractical to achieve the level of proof required. This 
is due to the very large sample sizes necessary when the prevalence is very low, and 
when applied tests do not have very high sensitivity and specificity. This is further 
complicated by variability in sensitivity and specificity, and a lack of reliable estimates of 
these test accuracy parameters for the population under study.  

As a result, true disease status cannot always be determined through the use of surveys 
alone. It is necessary to combine all the different sources of evidence available to assess 
the overall probability that a disease does not exist or is below the design prevalence.  



It is proposed that these problems may now be overcome through the use of a range of 
different analytical methods, including:  

• A standardized approach to scenario tree analysis and stochastic simulation to 
estimate the power of complex surveillance/survey outcomes. These notes address 
this approach.  

• Improved use of techniques to elicit and combine expert opinion as additional 
information to data generated by surveillance outcome (K. Stark, Personal 
communication),  

• Methods to adjust the value of data sources for surveillance based on the time that 
has passed since their generation (Schlosser and Ebel, 2001),  

• Bayesian approaches to the combination of data from multiple sources of 
surveillance system (Suess et al., 2002).  

Regardless of whether one or a combination of the above approaches is used, there is a 
need to ensure that the principles behind it, and the tools required to implement it, are 
sound and made widely available to those who need it. The use of these approaches 
would require specific tasks:  

1. Identify all possible sources of evidence for the absence of disease.  
2. Analyze each source independently through the construction of a scenario tree, to 

estimate the probability that an infected animal, if present, would be identified by 
the surveillance. At each branch of the tree, probability estimates and ranges are 
required. These should be derived from reliable data sources, if available, or 
formally structured expert opinion methods, if not.  

3. Use stochastic methods to determine a point estimate of the probability of 
detecting disease based on a scenario tree, as well as the probability distribution 
around that estimate (to provide measures of confidence).  

4. Adjust all values for the time elapsed since data collection.  
5. Combine the estimates from all different sources of evidence to provide an overall 

probability and confidence level.  
6. If the resultant probability is inadequate to meet international standards, either a) 

use sensitivity analysis to determine which method may be most effective at 
increasing the level of confidence, or b) conduct a (relatively small) structured 
survey to fill the ‘probability gap’.  

Identifying potential data sources 

In the following section the term data is used in its broadest sense, covering all factual 
information which can be used for analysis or as a basis for reasoning or decisions.  

In the process of analysing surveillance data to estimate the sensitivity of a surveillance 
system, we find that we need data for three different purposes:  



• describing the detailed structure of components of the system for drawing up 
scenario trees  

• estimating branch probabilities and proportions  
• analysing the results of the system as it has been applied  

There are many, varied SSCs in operation around the world, and the data sources needed 
to model them are extremely numerous, so it is not possible to give exhaustive lists of 
potential data sources. Here we suggest the types of data source which will be commonly 
available to draw on, and illustrate with a few specific examples.  

Drawing up a scenario tree 

When constructing a scenario tree for a component of the surveillance system, we are 
attempting to create a model of the process. For this we need detailed information on the 
structure of the process:  

• the sequence of events involved in the process  
• structure of the livestock production system in the country  
• epidemiology of the disease including likely risk factors  
• sampling / testing strategy  
• practical implementation details  

Take as an example the Australian export testing programme in relation to Western 
Australian freedom from bovine Johne’s disease (paratuberculosis; BJD). Many trading 
partners require that all cattle imported from Australia should have a negative serological 
test for BJD before shipment. How can Western Australia use the data generated by these 
tests to support its claim to freedom from BJD?  

To draw up a scenario tree we must know the structure of the cattle export industry. What 
cattle are exported, and to which countries? Which importing countries require BJD 
testing, and what type of cattle do they import? Are they beef cattle for breeding, dairy 
cattle, beef cattle for slaughter, or perhaps cull cows? What breed, age and sex are they? 
Where do these cattle originate? We must ensure that our analysis only includes cattle 
from the state of Western Australia.  

We need to have a good grasp of the epidemiology of BJD:  

• factors affecting the probability that a herd will be infected  
• factors affecting the probability that cattle will be infected within an infected herd  
• factors affecting the probability that the serological test will give a positive result 

in infected cattle  

Clearly, we need good knowledge of how animals for shipment are managed, including 
criteria for selection (on the farm, in sales, and from the exporter’s stock), when they are 
tested, and any potential or motivation for misclassification in the records.  



Where will all this information come from? A team of experts with collective knowledge 
covering the disease and the process should be good enough for drawing up the scenario 
tree, but it might be necessary also to look at cattle export records, references on BJD and 
possibly laboratory submission records.  

Estimating branch probabilities and 

proportions 

Examples of the data needed are given here under headings relating to the 3 node types. 
See the following section on Development of scenario trees for descriptions of node 
types.  

• category node proportions 
Most commonly these relate to the structure of the livestock production system 
under consideration, and the data needed are such things as:  

o records from/of  
� markets  
� industry administrative bodies  
� livestock movements  
� farm and animal productivity  
� identification schemes  
� farmer organisations  
� farm registrations  
� abattoirs  

o results of surveys yielding industry/farming statistics  
� census data related to livestock production systems  

o spatial data  
� GIS databases  
� map references  
� postcodes  
� latitude and longitude  

• risk category node relative risks 
What are needed here are realistic estimates of relative probabilities of infection 
among branches of the node, in the hypothetical scenario of the country being 
infected. Potentially valuable data sources include  

o prevalence surveys  
o literature (text books; journal articles)  
o reports from countries where the disease is endemic  
o climatic / environmental data  

� for the country / region  
� for areas from which prevalence data are available  

• infection node probabilities 
Design prevalences are not estimated from data, and are set separately (see under 
Design prevalence)  



• detection node probabilities 
There are many potential sources of data depending on the SSC being modelled. 
Common ones include  

o laboratory test performance data  
� literature  
� laboratory conducting the test  

o laboratory records  
� submissions  
� number and nature of tests performed  
� results  

o sensitivity of inspection or examination by veterinarians  
� literature  
� records  

� laboratory submissions  
� veterinary clinic records  
� prescription records  
� drug sales  

� sensitivity of inspection or examination by meat inspectors  
� literature  
� records of meat inspection findings and inspections 

conducted  
� surveys / trials  

� sensitivity of inspection or examination by abattoir-based 
surveillance program inspectors  

� literature  
� trials  

� sensitivity of inspection or examination by farmers  
� production records  
� veterinary clinic records  
� prescription records  
� laboratory records  
� quality assurance programme records  
� farm records  

As an example of data required for estimating branch probabilities and proportions, we 
will consider a scenario tree for the Danish diagnostic system applied to poultry. A tree 
has been drawn up as shown in Figure 9. Nodes, branch probabilities to be estimated, and 
data sources used for each are shown in Table 7  

The surveillance unit in this case is the batch of broilers, the house of layers or breeders, 
or the flock of backyard birds. Danish poultry are divided into four industry sectors 
(broilers; layers; breeders; backyard) using the INDUSTRY SECTOR category node. Within 
each industry sector there are nodes describing the probability that a farm will be 
infected, the probability that a unit will be infected within an infected farm, and a series 
of detection nodes:  



• Farmer consults veterinarian  
• Vet sends samples to lab  
• Lab performs test  
• Lab isolates agent  

The branch proportions for the INDUSTRY SECTOR node are based on the number of 
farms in each sector. These data come from the Danish central husbandry register (which 
lists all livestock producers who supply animals or produce to other people, along with 
the type of enterprise and numbers of livestock on the farm); the Danish Poultry Council 
(an industry body which maintains records of commercial poultry producers); and results 
of a door-to-door census of backyard (i.e. unregistered) flocks in designated infected 
areas during a recent disease outbreak.  

The unit (within farm) standard design prevalence is of interest since there are so few 
units per farm (average of 2.25 for broiler farms; 1.4 for layers) and for backyard flocks 
the unit is the whole flock. Clearly it is not possible for a farm to be infected with less 
than one unit infected, so a unit-level design prevalence of one infected unit per farm is 
used. The design prevalence is thus the reciprocal of the average number of units per 
farm, and this varies from sector to sector. The data source for the numbers of units per 
commercial poultry farm was the Danish Poultry Council databases.  

Branch probabilities for detection nodes are estimated using data from many sources, as 
listed below. For example, the Farmer Sensitivity of detection, or Pr(Farmer calls vet | 
infected house) is estimated from records of disease (high mortality) events in poultry 
houses (denominator) and matched records of veterinary consultations for the numerator. 
High mortality in poultry houses is derived from weekly mortality figures recorded by the 
Danish Poultry Council. Records of veterinary consultations are found in veterinary clinic 
records, laboratory submission records, and the national veterinary drug prescription 
database.  

Table 7 Data sources for branch probabilities and proportions for simplified scenario tree 
of Danish poultry diagnostic system.  

Node Branch Probability/Proportion Data sources 

INDUSTRY SECTOR Broilers PrBroilers 

1. Central Husbandry Register 
2. Danish Poultry Council 
databases 
3. Limited census of backyard 
flocks 

  Layers PrLayers  

  Breeders PrBreeders  

  Backyard PrBackyard  

FARM STATUS infected P
*
H 

Design prevalence (not based 
on data) 



  uninfected 1 – P*
H  

HOUSE STATUS infected P*
U 

Design prevalence (Danish 
Poultry Council databases) 

  uninfected 1 – P*
U  

FARMER 
CONSULTS VET Vet FarmerSe 

1. Danish Poultry Council 
mortality records 
2. Poultry veterinary clinic 
records 
3. Laboratory submission 
records 
4. Veterinary prescription 
database 

  No vet 1 - FarmerSe  

VET SENDS 
SAMPLES TO LAB Samples PSamples 

1. Poultry veterinary clinic 
records 
2. Laboratory submission 
records 
3. Veterinary prescription 
database 

  
No 
samples 

1 – PSamples  

LAB CONDUCTS 
TEST Test PTest 

1. Laboratory submission 
records 
2. Laboratory internal records 

  No test 1 – PTest  

LAB ISOLATES 
AGENT Positive TESTSe 

1. Literature 
2. Expert opinion 

  Negative 1 – TESTSe  



 

Figure 9. Simplified scenario tree for Danish poultry diagnostic system.  

Analysing results of application of the 

SSC 



For calculating the probability that the SSC would have detected the disease if it were 
present, we need data describing the units actually processed by the surveillance system. 
Essential data are  

• characteristics of each unit processed with regard to each of the factors included 
in the model;  

• herd (or other group of units) from which each unit comes  
• number of units processed, and  
• their dates of processing.  

Potential sources include  

• laboratory records  
• surveillance database  
• abattoir records  
• population description data  

o census  
o survey  
o central registers  
o industry organisations  

(Where some or all these essential data are not available, it is possible to simulate them 
from summary statistics for the SSC and the livestock industry involved; see section 
below on Simulated data.)  

We will take the example of the Danish serological surveillance program for classical 
swine fever (CSF). CSF sero-surveillance is based on an ongoing program of blood 
sample collection from pigs at slaughter and testing for CSF antibodies using ELISA. 
Samples tested for CSF are a sub-sample of a larger abattoir-sampling program aimed at 
Aujeszky’s disease surveillance. The protocol dictates that all culled boars and 10% of 
culled sows in Southern Jutland and 10% of culled boars and 5% of culled sows in other 
parts of Denmark are tested. These specimens are not collected according to a specified 
protocol, but on an ad hoc basis. The total number of specimens collected for 1998, 1999 
and 2000 were 28,073, 27,255 and 20,142 respectively. Two databases, recording the 
results of testing are available, one at the individual animal level, and one providing 
summary totals of the results for batches of specimens sent in by abattoirs. Factors (and 
their levels) affecting probabilities of infection which are included as nodes in the tree are  

• COUNTY (South Jutland; other)  
• FARM TYPE (breeder; slaughter)  
• AGE (adult; grower)  
• SEX (male; female).  

The CSF sero-surveillance databases supply  

• Farm ID  



• Sex  
• Date of receipt of samples  

Through farm ID further data are available from the Central Husbandry Register, giving  

• COUNTY  
• FARM TYPE  

Simulated data 

Where data are available for analysis of the tree, they should be used. If using a 
spreadsheet for calculation of the model, cross tabulation of the data is necessary at the 
start, to establish how many units go with which group, etc. Group-level sensitivities can 
then be calculated (see Analysing the tree), and the analysis is completed 
straightforwardly.  

When these data are not available, for example if animals are not identified, or if there is 
no way of matching animals to herds at the abattoir, then the only useful data available 
may well be one figure: the number of units processed in the time frame of interest. If 
there is also no information on the proportion of processed units falling into each level of 
an important grouping factor, then you have a problem! To analyse the tree successfully, 
it is necessary to simulate the missing data. This is simple if statistics are available to 
form the basis of such simulations, e.g.  

• number of herds  
• herd size  
• regional distribution of herds  
• proportions of animals processed coming from different areas  
• proportions of animals processed associated with different industry sectors or 

production systems or farm types  
• other descriptive statistics for the population of processed units.  

In a stochastic simulation model the necessary proportions and numbers may be 
simulated from such summary statistical data, giving an end result very close or identical 
to that which would have been derived from real data.  

The one figure which cannot be simulated, and which is crucial to the analysis, is the 
number of units processed.  

To analyse the tree assuming that all units are independent when this is not the case (see 
Analysing the tree) should be a last resort, since it will result in an over-estimate of 
confidence in the SSC.  



Describing surveillance system 

components 

A surveillance system component (SSC) is a surveillance activity which, in itself, can 
contribute evidence to disease freedom; it has the capacity to detect disease if / when it 
occurs. This includes both general and targeted surveillance activities; both “active” and 
“passive”.  

How does our selected SSC detect disease? What is the step-by-step process which must 
occur for a surveillance unit to be infected and detected? The starting point is always that 
the country is infected: disease/infection is present in the country.  

Scope of the model 

Immediately it is apparent that we must define clearly  

• whether we are talking about disease or infection;  
• which agent or syndrome is under consideration;  
• which livestock species we are covering;  
• exactly what geographical area does our SSC cover?  

Such questions are generally easily answered, but not always. If we are lucky the 
International Animal Health Code will give us clear guidelines.  

Unit of analysis 

The unit of analysis is that unit for which results are generated by the SSC. This will often 
be an individual animal, but may be a sample, a pooled sample, a group of animals, a 
batch of animals, a house, a farm, etc. For each unit passing through the surveillance 
process an outcome is recorded, and every outcome of the process applies to a single unit.  

Coverage 

The population “covered7” by the SSC is called the SSC reference population. This is the 
population about which statements will be made concerning sensitivity of the 
surveillance system, or probability of freedom.  

Comprehensive vs incomplete coverage 

Some SSCs may be said to have “comprehensive” coverage of the SSC reference 
population. The obvious example is the clinical diagnostic system, in which all animals 



have a probability of being observed with disease, and a diagnosis being pursued. 
Probabilities may vary from one sub-population to another, but all animals are covered by 
the system to a greater or lesser degree. Where the SSC has comprehensive coverage of 
its reference population, this must be borne in mind when defining tree structure, and 
there will be no need for records of the numbers of animals processed by the system – 
they are all processed, and what are needed are data describing the population. Thus, 
where a system has comprehensive coverage, the number of units for calculating CSe is 
the entire population.  

Where a component has comprehensive population coverage, inclusion of risk nodes will 
have no effect on the resulting CSe value unless there is also a difference in detection 
probabilities between risk groups. This is because if there is comprehensive coverage it is 
not possible to target surveillance according to risk, because the entire population is 
included in the surveillance.  

Where the SSC does not have comprehensive coverage of the SSC reference population 
(i.e. “incomplete” coverage – only a restricted number of units are processed by the SSC), 
the coverage of the surveillance process being analysed is determined by the units 
actually processed, which may be limited by various factors including:  

• location  
• management / production system  
• industry sector  
• species  
• age  
• sex  
• temporal constraints, e.g. seasonal incidence of disease or seasonal application of 

the surveillance process  

Where a surveillance component has incomplete coverage, CSe calculation is based on 
the actual numbers of units sampled, rather than the whole population, as units not 
sampled do not contribute to knowledge of the population status. Where coverage of a 
component is incomplete it may be either “representative” of the population (for example 
a random survey) or “biased” (targeted to specific risk groups).  

[7] The term coverage is used here to refer to the extent to which the SSC processes units from each level 
of each relevant factor dividing up the population (as in the list above); the term representativeness is used 
to refer to the extent to which the number of samples processed in each relevant population subgroup is 
proportional to the size of the subgroup.  

Accounting for lack of coverage 

One of the key benefits of a scenario-tree approach is that is allows the analysis of data 
from biased surveillance activities, particularly where sampling is specifically targeted at 
high-risk sub-populations. Targeting sampling at higher-risk sub-populations provides an 
equivalent CSe for a smaller overall number of samples compared to representative 



sampling, improving surveillance efficiency and reducing costs. In fact, from a purely 
statistical perspective, for a given number of units sampled, targeting exclusively high-
risk groups will maximise CSe, whereas each additional sample taken from a low-risk 
group instead of a high-risk group will reduce CSe.  

A secondary result of targeting sampling in this way is that some sub-populations 
(usually low-risk ones) will be under-represented in the data. This is an appropriate and 
expected outcome if targeting of sampling is to provide any benefit. However, this could 
lead to concerns of inadequate coverage of the SSC reference population if some sub-
populations are severely under-represented or not represented at all.  

One approach to address this issue would be to undertake a mathematical adjustment of 
CSe for coverage in the various sub-populations, using weightings based on their 
proportional representation. This approach effectively negates any benefit of targeting for 
risk, and is therefore not recommended. The recommended alternative is to recognise that 
coverage is incomplete and not representative and to include this when reporting the 
results of the analysis.  

Whether or not the coverage of the various sub-populations is considered adequate will 
depend on the level of coverage, relative risks and contributions to CSe for each sub-
population. For example, a low-risk group with poor representation would be of less 
concern than a high-risk group with comparably poor representation. It is therefore 
essential when reporting results to provide an assessment and comparison of the level of 
coverage of the various sub-populations and discuss the potential impact of lack of 
representativeness on the results.  

Where one or more sub-populations are under-represented it would be appropriate to 
report the assumed relative risk values, and contribution to CSe, along with the level of 
coverage, and some justification for why this is thought to be reasonable and appropriate. 
In addition, where a sub-population is not included in the surveillance at all it might be 
appropriate to explicitly exclude this group from the SSC reference population and the 
surveillance system, depending on the importance of this group in the disease 
epidemiology and tree structure.  

Temporal applicability 

The time period to which a single analysis of the surveillance data applies must be clearly 
defined. Factors which will influence the time period for analysis include  

• Epidemiology of the disease: speed of spread; seasonal spread; seasonal 
occurrence; duration of disease in a unit  

• Time course of the surveillance process; e.g. monthly disease reporting system; 
on-the-spot serological testing; mycobacterial culture  

• Economic and political importance of the disease; surveillance for a disease 
whose presence will result in loss of trade or severe economic hardship should 



probably be assessed repeatedly over short time frames, compared with that for a 
disease whose presence is of marginal concern.  

• Time course of the production system(s) under surveillance: e.g. units or groups 
which are isolated from the rest of the population for substantial periods; units 
with fixed production periods (e.g. tanks of fish; batches of broilers).  

• maximum time an infection can remain undetected in the population despite the 
disease awareness of the professional animal health workers  

In general, unless there are good reasons for selecting a different time period for analysis, 
we suggest:  

• one month for rapidly spreading, high consequence diseases  
• one year for slow moving diseases  

The SSC’s time period for analysis is only relevant when considering an ongoing 
surveillance activity, and in this case the data from successive time periods will be used 
sequentially to derive an updated estimate of the probability that the population is free of 
disease (at the design prevalence), as described under Temporal Discounting. If this 
process is followed, the choice of time period is not crucial from the perspective of the 
end result, since the probability of disease introduction over time is included in the 
analysis, and in general the final estimate of Pr(freedom) does not vary much with length 
of time period; so the required frequency of reporting (and associated factors as outlined 
above) is the major driving force behind choice of time period.  

Outcomes 

In the context of scenario tree analysis, a surveillance process has two possible outcomes: 
positive and negative. A positive outcome occurs when a unit in the surveillance process 
is identified as being diseased, and a negative outcome occurs when a unit in the process 
is not identified as being diseased.  

The meanings of the terms positive and negative outcomes should be clearly defined, and 
are usually obvious, e.g. isolation of virus. Since the surveillance process includes all 
follow-up testing to resolve initial positive laboratory test results, a positive result in a 
serological test is generally not the definition of a positive outcome from the surveillance 
process. Follow-up testing may well not be confined to the unit which generated the 
suspicious test result.  

Specificity 

SSCs used to provide evidence that a country is free from disease have, by definition, 
perfect specificity. In a disease-free environment, any positive surveillance process result 
will inevitably be investigated fully until a clear decision can be made on whether this 
was a true or false positive result. If it was a true positive, the population is infected, and 



any analysis of SSCs to develop confidence in disease freedom is no longer relevant. If it 
is subsequently identified as a false positive test result, it is then a further negative 
outcome from the surveillance process, and can be used along with the others towards 
SSC sensitivity. The SSC should be seen to encompass all necessary follow-up testing to 
resolve potential false positive outcomes. It can then be said to have perfect specificity. 
Other authors have taken a similar approach (Cannon 2002; Dufour et al 2001).  

For some diseases, the occasional positive surveillance outcome may be within some 
allowable prevalence limit. While this may be acceptable within certain specific trading 
contexts or definitions, these notes address only the disease-free scenario, and the 
question of how to quantify confidence derived from negative surveillance findings. It 
should be noted, however, that the scenario tree methodology is theoretically perfectly 
capable of analysing data from a surveillance process that also yields false positive 
results.  

Development of scenario trees 

A scenario tree models the process of disease detection by a SSC, starting from the 
country being infected. It includes all factors affecting the probability that a surveillance 
unit will be infected, and all those affecting the probability it will be detected. The tree 
may be thought of as tracing the probabilities that a single unit, chosen at random from 
the population, will fall into one of these groups:  

• positive outcome  
• negative outcome.  

In this context, a negative outcome includes  

• unit is tested with negative result  
• unit is not processed.  

Functions of a scenario tree in analysis of 

a SSC 

1. to visualise and document the logical and practical structure of the surveillance 
process  

2. to define the interrelationships of factors affecting  
o Pr(infection)  
o Pr(detection)  

3. to clarify and describe the steps involved in analysis of the SSC  
4. to summarise or average probabilities of infection and detection across factor 

levels where factor level data are not available for units processed.  



The tree defines the probabilities for each individual unit to be infected and detected. If 
factor level data are available for all units, the tree simply serves to describe the process 
and logical structure for analysis (1 – 3 above); each processed unit’s and group’s 
Pr(detection) and Pr(infection) are calculated individually in analysis. If data are missing, 
the tree is used to calculate weighted averages for Pr(detection) and effective 
Pr(infection) across factor levels.  

Figure 10 shows a generalised scenario tree that will be used for examples and exlanation 
of the methodology throughout the rest of this guide.  



Figure 10. Stylised scenario tree (only 2 of four main branches completed; assume other 
2 identical).  

Node types 



There are three main node types, each of which is illustrated in Figure 10:  

• Infection nodes  
• Detection nodes  
• Category nodes, which are subdivided into  

o risk category nodes (risk nodes); and  
o detection category nodes  

Rules for inclusion, exclusion and ordering of nodes follow.  

Scenario tree structure is similar to decision tree structure, except that all nodes 
(excluding terminal (or end) nodes) are probability (or chance) nodes, and have no value 
(or utility) associated with them. Infection and detection nodes are effectively chance 
nodes, and the sum of their branch probabilities is 1. Category nodes are similar to 
chance nodes, with population proportions replacing branch probabilities, such that the 
sum of their branch proportions is 1. Risk category nodes also have a risk (of infection) 
associated with each branch. How each node type is handled during analysis is described 
in the following sections.  

Infection nodes 

An infection node specifies the infection status of a unit or group of units. It has 2 
branches; infected and uninfected. Examples include  

• ANIMAL INFECTION STATUS  
• HERD INFECTION STATUS  

Detection nodes 

A detection node represents any event, action, choice, procedure or test which contributes 
to an infected unit’s detection in the surveillance process being modelled. In other words, 
detection nodes all contribute to the unit sensitivity of the process. Typically, such nodes 
placed sequentially describe the process of detection of infection, and have two branches, 
representing positive and negative node outcomes. Examples include  

• FARMER CALLS VETERINARIAN  
• BLOOD SAMPLE TAKEN  
• ELISA TEST CONDUCTED  
• ELISA TEST RESULT  

Category nodes 



A category node simply defines categories into which units or groups of units fall. Rather 
than probabilities, each branch has a proportion attached to it; the proportion of groups 
(farms) in each COMPARTMENT in Figure 10, for example. Category nodes are included 
because they represent factors which affect the probabilities that a unit will be infected or 
detected, or because their branches represent essential segments of the SSC reference 
population, which must be covered by a surveillance system supporting disease freedom. 
Category nodes are divided into risk category nodes and detection category nodes.  

The population proportion attached to a branch of a category node is the proportion of 
units / groups processed in the SSC (PrSSC). If the SSC has comprehensive coverage of 
its reference population, this is the same thing as the proportion of units / groups falling 
into that category in the reference population (PrP). As will be seen below, these branch 
proportions are used for various purposes, and it is important to ensure that the proportion 
used is appropriate for the circumstances. (There are circumstances in which the 
population proportion of units / groups is needed.)  

A category node has two or more branches, one for each level of the factor represented 
by the node. Within each branch of a category node the units (or groups, as appropriate) 
are homogeneous with regard to risk of infection or probability of detection; if they are 
not, category nodes to subdivide the population further should be inserted. Examples 
include  

• administrative subdivisions such as state, province or county (one branch per 
subdivision, with the proportion attached to each branch being the proportion of 
groups (or units, as appropriate) which originate in the subdivision, among those 
processed in the SSC)  

• sex (one branch per sex, with branch proportions representing the proportions of 
male and female animals among those processed in the SSC).  

At each category node, branch proportions must sum to 1.  

Risk category nodes 

Risk category nodes (risk nodes) represent factors dividing the SSC reference population 
into subsets with different risks of being infected (at the design prevalence). Each branch 
has an associated differential risk (R), as well as a branch proportion (PrSSC). (Refer to 
Incorporating differential risk for estimation of R values.)  

Detection category nodes 

These represent factors affecting the probability of detection, and each branch has an 
associated branch proportion, as described under Category nodes.  



Grouping levels 

When the tree is analysed for multiple units assessed by the surveillance process, 
sensitivities of detection must be calculated at different grouping levels within the tree 
structure. In the sample tree shown in Figure 10, the process has a unit sensitivity. From 
this, the probability that a unit will be infected, and the number of units processed from 
the group is calculated the group sensitivity, and from the group sensitivity for each 
group processed from the compartment and the probability that a group is infected, is 
calculated the compartment sensitivity. The GROUP and COMPARTMENT “levels” of the 
tree are referred to as grouping levels.  

While on the subject of levels, COMPARTMENT is a “higher level” node than GROUP 

STATUS.  

Ordering of nodes 

The first rule for ordering of nodes is that there are no hard-and-fast rules for ordering 
nodes. We have found, however, that the tree will be easier to design and comprehend, 
and more importantly, easier to analyse, if the following guidelines are followed. The 
order of nodes in a scenario tree is the same as the sequence in which they are placed. 
The first node is the root node (generally COUNTRY INFECTION STATUS in disease 
freedom scenario tree models) and the last nodes are terminal nodes, representing the 
outcomes (positive or negative) of each limb of the tree. Between the root and the 
terminal nodes we place our infection, category and detection nodes in an order or 
sequence, running from high to low levels. Each path from the root node to a terminal 
node is referred to as a limb of the tree.  

A few principles first:  

• Each node is conditional on all previous (higher level) nodes in that limb of the 
tree  

• Order has no effect on the total number of nodes  
• The ordering of nodes influences the nature of the conditional relationships; some 

conditional relationships reflect the form in which probability estimates are 
available, while the probabilities of the inverse relationships are difficult to 
calculate or estimate. For example, the probability that a herd is infected given 
that it is in region 1 is more easily grasped than the probability that it is in region 
1 given that it is infected. As another example, if information on cattle farms is 
collected and held at the regional government level, the proportion of cattle herds 
in each region that are dairy herds will be more readily available than the 
proportions of dairy herds in the country that are located in individual regions.  

And now some rules and guidelines:  



1. Nodes should be ordered in decreasing size of groupings of units, as one goes 
down the tree.  

2. Keep nodes in chronological order of events within the surveillance process; don’t 
have the ELISA being done before the sample has been collected.  

3. Place infection nodes above detection nodes. This is essential for easy analysis 
where it is necessary to account for clustering of disease within groups (most 
analyses).  

4. Category nodes may be placed among infection nodes or among detection nodes; 
a risk category node above the infection node to which it applies, and a detection 
category node above the detection node(s) to which it applies.  

Factors to include 

The scenario tree is a model of a single unit in the SSC (selected at random from those 
processed in the SSC), from which may be calculated its probability of a positive 
outcome in the surveillance process. This unit is already selected for inclusion in the SSC. 
Bearing this in mind, the factors that should be included in the scenario tree are those that 
influence the probability that a unit will be:  

• infected or  
• detected.  

These factors are represented in the tree by nodes of the types described above.  

The set of factors included should be the minimum required to describe the system 
accurately. Factors not to include are all those which have no significant effect on the 
probability that a unit will be infected or detected. In a SSC with comprehensive coverage 
of the SSC reference population, factors affecting probability that the unit will be 
sampled or tested are all factors affecting the probability of detection. In a SSC which 
does not have comprehensive coverage, factors affecting the probability of selection for 
inclusion in the SSC should not be included, since the tree is modelling units which have 
already been selected.  

It is important not to include more factors than are necessary in the model, for the usual 
modelling reasons:  

• unnecessarily complex models are less easily understood by the modeller, and 
particularly by others  

• the more variables (with associated uncertainty distributions) that are included, 
the more uncertain the model outputs, so there need to be significant benefits from 
including any additional factor  

• given the tendency of disease to cluster in groups, it is usually necessary to 
analyse the model taking this into account, generally at each grouping level in the 
tree. For every grouping level included there is therefore an accompanying loss of 
sensitivity of (or confidence in) the surveillance process.  



Clearly all factors directly describing the probability of detection or the probability of 
infection will be included; such things as  

• HERD INFECTION STATUS  
• UNIT INFECTION STATUS  
• FARMER CALLS VET  
• LABORATORY CONDUCTS TEST  

These factors will be modelled as infection nodes and detection nodes. Factors describing 
characteristics of different sections of the population of units or groups, which need to be 
included because of the effects of their different levels on the probability of infection or 
detection, will be modelled as category nodes. Examples are  

• LOCATION when modelling a surveillance process for a vector-borne disease with 
patchy distribution of the vector;  

• INDUSTRY SECTOR when modelling a surveillance process for a disease spread 
mainly to back yard poultry by wild birds;  

• FARM TYPE when modelling an abattoir monitoring process in which only cull 
sows are sampled;  

• ADMINISTRATIVE REGION or LABORATORY when modelling a diagnostic 
surveillance process handled by regionally based laboratories with different 
diagnostic capacities.  

Detection is the identification of an infected unit as positive. A unit cannot be identified 
as positive if there is no chance it will be included in the surveillance process, due to 
systematic exclusion of its category of units. Thus a factor which results in systematic 
exclusion of a significant number of units from the process is a factor affecting the 
probability of detection. This includes all issues of the coverage of the surveillance 
process. One aim of analysing the model is to account for detection of disease in all 
sectors of the population in which disease might occur, and it is important that all such 
sectors for which the probability of detection is significantly different should be 
identified and explicitly included in the model as branches of the tree, with associated 
branch probabilities of detection. For example, the following factors affect the probability 
of detection, and should be included:  

• INDUSTRY SECTOR (beef or dairy) when modelling a surveillance process for IBR 
which only tests milk samples  

• ABATTOIR or perhaps REGION when modelling an abattoir sampling surveillance 
process which is only operated in certain abattoirs.  

Both of these factors may also need including for possible effects on probability of 
infection as well as probability of detection. If not, they should be inserted in the tree 
among the detection nodes, below the unit infection node (see rule 4 above). If they do 
also affect probability of infection they should be placed among the infection nodes, 
probably above the herd grouping level. In addition, if they are considered to define 
different compartments or major groupings of the SSC reference population, within each 



of which surveillance is required for adequate coverage of the population, they should 
probably be placed high up the tree as risk category nodes (see Application in relation to 
zoning and compartmentalisation under Incorporating differential risk).  

Selection is unit-by-unit selection of units for inclusion in the surveillance process, for 
example in a sampling system such as  

• sampling every fifth carcase on the line;  
• sampling every 10th animal through the race;  
• testing a random sample of animals  

Factors affecting only the probability of selection need not be included, for example:  

• DAY OF SLAUGHTER when modelling an abattoir sampling program and the 
sampler only works 3 days a week (unless, of course, INDUSTRY SECTOR 

SLAUGHTERED or REGION SLAUGHTERED or SPECIES SLAUGHTERED are also 
arranged by the day);  

• SEX when modelling a serological surveillance process in which only females are 
bled. While this results in systematic exclusion of males, the two sexes are 
generally present in most groups (as defined by grouping factors), and there is no 
need to include SEX in the model unless it also influences probability of infection 
(e.g. mastitis) or detection (e.g. sampling only male poultry excludes all layer 
farms).  

Estimation of branch probabilities 

Every branch of every detection and infection node in the tree must have a branch 
probability assigned to it. Branch probabilities may, in theory, be qualitative, 
semiquantitative or quantitative in nature, and methods have been described for 
calculation of wholly qualitative or semiquantitative scenario trees in the related field of 
risk analysis. Such methods are perfectly valid, and we hope that in time similar methods 
will be developed for use in the context of scenario tree modelling for evaluation of 
surveillance for disease freedom. It is important that the modelling methodology should 
be generally applicable if it is to be of use in the arena of international trade, and in data-
poor environments qualitative or semiquantitative methods may be the sensible approach.  

The analysis method described here is quantitative, however, and requires all branch 
probabilities to be expressed quantitatively. We also recommend stochastic modelling 
rather than deterministic, and suggest that each branch probability estimate should 
incorporate the uncertainty associated with the estimate, in the form of an appropriate 
probability distribution.  

Using available data 



Whether quantitatively or qualitatively expressed, it is always important that branch 
probabilities should be based as far as possible on data. The required conditional 
probabilities are often very specific in nature, and require detailed analysis of available 
data sources. Examples of data which may be used for estimation of branch probabilities 
are given in Identifying potential data sources.  

Since the tree models surveillance for an exotic disease, prevalence data and diagnostic 
data are generally not available in the country conducting the surveillance. In these 
circumstances estimates of probabilities for detection node branches may need to be 
made from records involving clinically or epidemiologically similar diseases. Estimates 
of relative risks for branches of risk nodes will probably have to be derived from data 
from other countries, or from records of past outbreaks, together with climatic and 
geographical knowledge of the country and epidemiological knowledge of the disease.  

Expert opinion 

Where adequate data are not available for estimation of branch probabilities, and this is 
almost certain to be the case for some probabilities in all models, the generally accepted 
approach is to estimate the probabilities from expert opinion. Various authors have 
described procedures for harnessing expert opinion for use in the related field of risk 
analysis. Relevant guidelines include  

• Gather opinion from a panel of experts. The panel should include relevant 
scientists and representatives of stakeholders as appropriate  

• Capture the uncertainty of the experts as well as their best estimates  
• Combine disparate opinions into a single probability distribution (e.g. Vose 2000; 

Stärk et al. 2000)  

Design Prevalence (P
*
) 

Detection of disease at a high prevalence is much easier than detection at low prevalence, 
so it is necessary to specify the prevalence(s) at which we will determine the sensitivity 
of our surveillance system component.  

This prevalence, set for the purpose of drawing conclusions about the effectiveness of the 
SSC against an agreed standard, is termed the design prevalence. Design prevalence 
forms part of the design of the model, and is not related to any actual prevalence of 
disease in the population under study (which, since we are considering issues of freedom 
from disease, is most likely to be zero). It is not subject to uncertainty or variability, and 
need not be described by a distribution.  

A number of different terms have been used to describe the concept of design prevalence, 
including minimum detectable prevalence, maximum acceptable or permissible 
prevalence, and minimum expected prevalence. These describe different aspects of the 



design prevalence, and relate to ways in which a value can be selected. The term design 
prevalence is consistent with that used by Cannon (2002).  

When multiple surveillance systems (or other sources of evidence for freedom from 
disease) are compared, it is important that the comparison be based on the same design 
prevalence assumptions for all systems.  

Typically, design prevalence refers to the animal-level prevalence of disease (or, 
equivalently, the proportion of animals in the population that are diseased, or the 
probability that an animal selected at random from the population will be diseased). This 
tends to imply that the probability of infection is relatively constant across the entire 
population, which is usually untrue due to the clustering of disease. Most diseases cluster 
in groups, which means that the probability that an animal is diseased is much higher if 
other animals in the same group are infected, compared to a group where no other 
animals are infected. In order to capture the concept of clustering at the herd level, two 
levels of design prevalence may be used, one at the animal level and one at the herd level. 
The design prevalence at the herd level (P*

H) is the proportion of herds in the country that 
are infected. Where P*

H is specified, the design prevalence at the animal level (P*
U) is the 

proportion of animals (or units) that are infected within infected herds.  

The concept of multiple levels of design prevalence may be extended to account for 
further levels of disease clustering, such as the design prevalence of infected chicken 
houses on an infected farm (where the population is grouped into 1) farms, and 2) houses. 
Despite this, the most common approach is to consider clustering only at one level, and 
therefore include only two design prevalence levels in the tree definition.  

It is worth noting that this approach is consistent with statistical approaches to the 
analysis of survey data to demonstrate freedom from disease (Cameron & Baldock 
1998a).  

Determining design prevalence(s) 

The design prevalence is set by the person undertaking the analysis of the surveillance 
system, and guidance is therefore required as to the appropriate figures to use. 
Approaches that should be used, in order of preference, are:  

International Standards 
Where international standards exist, these should be used. It may be reasonable to 
use a less rigorous standard (ie higher design prevalences) than those set by 
international standards when a trading partner is willing to accept such a level. It 
is not reasonable to require a standard more stringent than those set by 
international standards. The OIE has established standard design prevalence levels 
for surveillance for rinderpest, contagious bovine pleuropneumonia, bovine 
spongiform encephalopathy (less clearly), enzootic bovine leukosis, and others.  

Trading partner requirements 



Where international standards do not exist, and the purpose of demonstrating 
freedom from disease is for international trade, the requirements of trading 
partners should be taken into consideration. These may be subject to negotiation, 
based on the following points.  

Biological plausibility and production system parameters 
If no existing guidelines, standards or requirements exist, you (the analyst) must 
establish suitable values. The best guide for this is an understanding of the 
biology of the disease, and the structure of the production system.  

• The design prevalence at the animal level (P*
U) may be thought of as the 

minimum prevalence that would occur if the disease were present in a herd. If the 
disease is highly contagious and rapidly spreading, and the test being used is 
serological examination for antibodies, it may be expected that a large proportion 
of an initially naïve population would seroconvert to the disease, if it were 
present. This assumes that all animals in the group (eg herd) are in reasonably 
close contact with each other (hence the need for a consideration of clustering). 
For a disease such as FMD, HPAI or CSF, it is reasonable to expect that about 
80% of survivors within a herd would seroconvert. While this may be the 
expected prevalence, it is possible that, under certain circumstances, the 
prevalence may be significantly lower than this. In order to be conservative, a 
lower figure should be chosen, such as 20%. This reflects the fact that the disease 
spreads rapidly, but is lower than any actual prevalence that we would normally 
expect.  

• For diseases that are not rapidly spreading, the prevalence may be much lower. 
For instance, it is conceivable that for a disease like bovine paratuberculosis or 
bovine spongiform encephalopathy a single infected animal could persist in a herd 
for a significant time. The minimum expected prevalence is therefore extremely 
low, in which case the next point (Resources and political considerations) must be 
considered.  

• When establishing P*
H, the same problem is encountered. It is conceivable, 

especially in industries with good farm level biosecurity, that a single farm may 
be infected.  

Resources and political considerations 
When consideration of the biological behaviour of the disease indicates that it 
may be present at very low prevalence levels, it is often not feasible to detect the 
disease at these low levels. The development of a survey or surveillance process 
to detect extremely low levels of disease may be too costly and require more 
resources than are available. It is therefore often necessary to decide on design 
prevalence levels that are based more on what is feasible and can reasonably be 
demanded, than solely on biological grounds. This is in fact the way that 
international and trading partner standards are generally set. Political 
considerations dictate that a balance be established between the interests of the 
country demonstrating freedom (desiring that the design prevalence be as high as 
possible in order to maximise the reported level of confidence in the surveillance 
process) and a trading partner (aiming for as low a design prevalence as possible 



to give the strongest evidence that disease is not present). The most common 
result of this compromise is to select a design herd prevalence of 1%, although 
values of 0.1%, 0.5% and 5% are also used.  

Small herds 

When a low P*
U is specified, this can have little meaning in a small herd – in a herd of 10 

animals, how many are infected with P*
U = 0.05? The problem lies in the logic of the 

tree, which requires that this herd is definitely infected. In these circumstances (i.e. when 
the units processed are known to have come from a small herd) it is appropriate to 
assume that a minimum of one animal is infected in an infected herd. In the formulae 
presented below for calculation of herd-level sensitivity, it will then be appropriate to use 
hypergeometric probability formulae (e.g. Cameron & Baldock, 1998a and b) rather than 
the binomial probabilities presented.  

Incorporating differential risk 

Some subgroups of the population may be considered to be at higher risk of being 
infected (at the design prevalence) than others. This forms the basis of targeted 
surveillance, and the advantages of targeting high-risk groups will be lost if such 
differential risk is not incorporated in the analysis, since P* is fixed across the population. 
For example, surveillance to demonstrate freedom from infection for a disease with an 
insect vector (eg bluetongue) may cover all areas of the free zone. However, risk of 
disease is much greater in areas closer to a known infected zone. Demonstration that this 
border area is free from disease may be considered more convincing than testing done in 
areas which are a great distance from any infected area. The way in which these 
differences in disease risk, and consequently differences in the value of information 
derived from different subpopulations, are captured, is through the use of risk nodes.  

Risk nodes are category nodes representing risk factors for infection, and may apply at 
the unit level (e.g. AGE in a SSC detecting presence of antibodies) or at the group level 
(e.g. HERD TYPE (dairy or beef) in a SSC for bovine Johne’s disease, where intensive 
dairy herds are more likely to be infected than extensive beef herds).  

Differential risks are applied to the branches of a risk node such that the average risk for 
the SSC reference population is 1 (see below). This ensures that the calculated sensitivity 
of the SSC is not altered by the differential risk values used, when there is representative 
sampling of the SSC reference population; any effect on SSC sensitivity associated with 
differential risks is due to biased sampling (i.e. differences between proportions of the 
units actually processed in the SSC, to which the differential risks are applied, and 
proportions of the SSC reference population), which may well be deliberate, as in 
targeted surveillance processes. When a disproportionately high number of high-risk 
units has been processed, differential risks will raise the calculated sensitivity of the SSC 
by applying a higher effective probability of a positive outcome (Pr(unit positive) = 



Pr(unit infected) x Pr(detected|infected)) to each high-risk unit than to each low-risk unit 
processed. The effective probability of being infected (EPI) for any unit or group is the 
product of the design prevalence and any applicable differential risk(s). So for the tree in 
Figure 10, the effective probability of a herd in HERD RISK GROUP 1 in COMPARTMENT 4 

being infected is , and the effective probability of a unit in UNIT 

RISK GROUP 2 being infected within an infected group (herd) is .  

Differential risks are derived from relative risks estimated for each branch of the node. 
Relative risks for each branch may be estimated from data (historical observations or 
observations from countries / zones / compartments where disease is present) or from 
expert opinion, based on the epidemiology of the disease and the characteristics of the 
environment and population involved. Relative risks are specified relative to the lowest 
risk branch, and are then adjusted to ensure that the (weighted) average risk for the 
section of the SSC reference population represented by the risk node is 1.  

 
(1) 

where the node has L branches, and PrPl is the proportion of units or groups (as 
appropriate) in the SSC reference population that falls into the lth branch8.  

It is important to note that the proportions used to adjust relative risks (PrPl) are 
proportions of the SSC reference population. The proportions applied to risk node (and 
all category node) branches for calculation of actual system sensitivity are proportions of 
groups or units actually processed in the SSC (PrSSCl).  

When the units processed come from a known group (e.g. animals from a known herd) 
and there is, as in Figure 10, a UNIT RISK GROUP node (e.g. AGE (Adult / Juvenile)), then 
the population proportions needed to adjust the relative risk for each branch of the risk 
node are the proportions of Adults and Juveniles in that herd; these are herd-specific 
proportions. Often, these data will not be available, and it will be necessary to estimate an 
average proportion of Adults / Juveniles for all herds in this limb of the tree (i.e. this 
COMPARTMENT and this HERD RISK GROUP in Figure 10).  

Differential risks must further be constrained such that, for the highest risk branch, RlP
* 

is no greater than 1. In practice, R is multiplied by P* to give the effective probability that 
the unit or group is infected, given that the population is infected at P*. Clearly, this 
probability should not be allowed to exceed 1. If this constraint results in downwards 
adjustment of R values (such that average population risk is then <1), the end result will 
be underestimation of actual system sensitivity adjusted for targeting. Such scenarios are 
rare, given the generally low values used for P*.  

[8] While they are not needed for estimation of SSC sensitivity, completing all branches of the tree also 
requires specifying a differential risk to be applied to the uninfected branch of the infection node (Ul). This 
is calculated such that Ul = (1 – RlP

*) / (1 – P*), ensuring that the probability of being infected and the 



probability of being uninfected (both adjusted for the differential risk assigned to the group in question) 
sums to 1 for each infection node – risk node combination.  

Multiple risk nodes 

Where there are multiple risk nodes preceding an infection node (i.e. there is more than 
one factor affecting the effective probability of infection for a unit or group) it is 
conceptually possible to calculate the EPI in two ways. For a group infection node with 
two preceding risk nodes (nodes A & B) with branches 1, 2, 3 and 1, 2, there are 6 
possible risk configurations for any given group, namely A1B1; A1B2; A2B1; A2B2; 
A3B1; A3B2. Possible ways of calculating values for EPIH for a A2B1 group are:  

1. calculate adjusted risks for each risk node separately, based on applicable 
reference population proportions (PrPs), and then  

EPIH_A2B1 = ARH_A2 × ARH_A2_B1 × P*
H  

In this case, the PrP specified for each branch of node B (the second, lower, node 
of the two) is conditional on the branch of node A in which it is situated. So 
PrPH_B1 (the proportion of groups in branch 1 of node B in the reference 
population) varies with the branch of node A, and is therefore designated 
PrPH_A2_B1 (etc.) for branch 2 (etc.) of node A. This notation is also used for the 
relative (RR) and adjusted (AR) risk variable names.  

2. define 6 risk configurations (limbs of the tree) as above (A1B1 etc.), then  
o calculate reference population proportions for each limb by multiplying 

together the PrPs for the relevant branch of each node on the limb (eg 
PrPH_A2 × PrPH_A2_B1);  

o calculate among-limb relative risks (RR) by multiplying together RRs for 
each limb’s contributing branches of each of the 2 risk nodes (RRH_A2B1 
= RRH_A2 × RRH_A2_B1 in this case);  

o calculate a single adjusted risk for each configuration using the calculated 
PrPs and RRs for each limb;  

o then  

EPIH_A2B1 = ARH_A2B1 × P*
H  

Only the first of these two possible methods is correct, and method (2) above should 
not be used. This is because of the conditionality of relative risks and population 
proportions on the branches of the preceding nodes in which they are situated. 
Multiplying them all out before calculating the adjusted risk (as in method (2) above) 



leads to a loss of the appropriate relativity of proportions and risks. In summary, always 
specify population proportions and relative risks conditional on all preceding nodes, and 
calculate adjusted risks separately for each risk node, before calculating the effective 
probability of infection as in the equation given in (1) above.  

Building of scenario trees 

Once the types of nodes, factors for inclusion and order of nodes have been established, 
the scenario tree can be built. The tree starts with a root node, and continues through 
branches down to the terminal nodes of the tree. These represent the final outcome, i.e. 
recognition of a unit as positive or negative.  

Root node 

The root of the tree may be thought of as COUNTRY (or other population) INFECTED. The 
purpose of the model is to estimate confidence in the surveillance process’s ability to 
detect disease when it is present in the country (at the design prevalence), and to do this 
all factors influencing a unit’s probability of giving a positive outcome, from the country 
level down to the unit level, must be included. The highest level grouping factor (e.g. 
REGION or INDUSTRY SECTOR) then forms the first or root node (in these examples a 
category node).  

If the analyst wishes to estimate a posterior probability that the country is free of disease, 
given the negative surveillance results and a prior estimate of the probability of freedom, 
then the root node will be an infection node, COUNTRY STATUS. The rest of the tree is 
identical, and grows from the infected branch of the COUNTRY STATUS node, while the 
uninfected branch represents a negative process outcome, and is immediately followed by 
a terminal node. The tree is then calculated back to the infected branch of the root node to 
estimate the sensitivity of the process, and finally the extra step is taken of making a 
Bayesian estimate of the probability that the country is free of disease.  

Completion and truncation 

For the sake of completeness, and for calculation of a sensitivity ratio (SR), trees 
modelling surveillance processes with incomplete coverage of the SSC reference 
population must also be calculated for the scenario of complete, representative coverage, 
and therefore it is not possible to ignore branches of the tree which are not represented in 
the units processed in the SSC; all category branches must be followed to the bitter end. 
Naturally, this is also true for trees modelling systems with complete (and/or 
comprehensive) coverage of all units in the population.  

However, one branch of each infection node (and many detection nodes) represents a 
negative outcome of the process, and so should be terminated at this point. In Figure 11, 



for example, every node except the REGION category node has only one branch which 
needs to be followed further. The tree must be followed through for each REGION branch, 
but all other nodes have one of their two branches meeting a terminal node immediately.  

 

Figure 11 Scenario tree for a typical on-farm clinical diagnostic system (only 1 of four 
main branches completed; assume others identical in structure)  



Analysing the tree assuming 

independence  

Analysis of the tree is the calculation of the sensitivity of the SSC; the probability that the 
SSC would detect infection if it were present at the design prevalence(s). In situations 
where  

• all units (generally animals) can be considered independent of each other with 
regard to probability of being infected, and  

• the units processed are representative of the population, i.e. the proportions of 
units processed (PrSSC) falling into each of the categories specified in the tree are 
the same as their proportions in the SSC reference population (PrP),  

then the process is simple. First, calculate the probability that any randomly selected unit 
in the population will give a positive outcome (CSeU, the SSC (component) unit 
sensitivity). This is done be calculating the overall limb probability for each limb of the 
tree (i.e. for each outcome / terminal node), and summing these limb probabilities for all 
limbs with positive outcomes. The limb probability for any limb’s outcome is simply the 
product of all branch probabilities (for infection and detection nodes), branch proportions 
for all category nodes, and branch differential risks for risk category nodes, along the 
limb. For the tree in Figure 11 (with regions k = 1 … 4) this will give  

 
(2) 

if FarmerSe and PTest vary among regions and PSamples and TestSe do not. There is 
only one limb with a positive outcome for each region.  

The calculation for the tree in Figure 10, which includes risk factor nodes at 2 levels, as 
well as detection factor nodes, is  

 (3) 

where UDCi denotes levels of the UNIT DETECTION CATEGORY node; URGj denotes 
levels of the UNIT RISK GROUP node; HRGk denotes levels of the HERD RISK GROUP 
node; and Cl denotes levels of the COMPARTMENT risk node.  

Suppose our surveillance process tests n units, all with negative results. Since these units 
are independent of each other, each has the same value, or contribution towards our 
confidence in the process, and the overall component sensitivity (CSe) is the probability 
that one or more positive units will be detected, given that the country is infected.  

CSe = Pr(≥ 1 positive unit | country infected), or Pr(S+ | D+)  



Now Pr(≥ 1 positive unit | D+) = 1 – Pr(all units negative | D+),  

and Pr(all units negative | D+) = (Pr(1 unit negative | D+))n  

= (1 – Pr(1 unit positive | D+))n  

So CSe = 1 – (1 – CSeU)n.  

Advanced approach - accounting for lack 

of independence among units 

The assumption of independence is generally unreasonable, although circumstances in 
which it is appropriate include  

• genuinely representative sampling of units in which disease is evenly spread 
throughout the population of units;  

• a surveillance process with comprehensive coverage of all units in the population, 
with negligible clustering of disease.  

In general however, disease occurs in clusters or groups of susceptible animals. If a herd 
is infected, the probability that an individual animal is infected is P*

U, while the 
probability that an animal in the uninfected herd next-door is infected is zero. This 
clustering effect is dealt with in analysis of our scenario tree by specifying separate 
values for P*

H (herd-level design prevalence) and P*
U (animal-level design prevalence 

given that the herd is infected).  

We test for the presence of infection in a herd by testing a suitable number of animals, 
and if they are all negative, we conclude with a certain level of confidence that the herd is 
not infected at a prevalence of P*

U. If we now test another animal from the same herd, the 
additional information we get about the absence of infection in the herd from another 
negative result is minimal. If we instead test an animal in the herd next-door, we will get 
considerably more information about the probability that this new herd is infected when 
we get our first negative result; each additional negative sample we take from a herd 
gives us incrementally less information about the likelihood that the herd is infected. We 
can revise our estimate of the effective probability that the herd is infected (i.e. 
differential risk(s) multiplied by herd-level design prevalence) at the animal-level design 
prevalence after every negative sample we process, using Bayesian revision:  

 (4) 

where we have perfect specificity; PHh,i is our estimate of the effective probability that 
the hth herd is infected after the ith negative unit; P*

U is the unit (within herd) design 
prevalence; SeU is the sensitivity of detection for each unit; and assuming that the 
number of diseased animals in an infected herd is binomially distributed (i.e. units within 



herds are independent of each other with respect to disease state). Where there are unit-
level (i.e. within herd) risk nodes, P*

U will be replaced in this formula by the relevant 
EPIU.  

Diseased animals will often be found clustered in infected herds, and diseased herds 
clustered in an infected locality. This clustering effect must be dealt with in analysis of 
our scenario tree (see Stepwise calculation of system sensitivity).  

Calculation of unit sensitivity (SeU) 

The tree comprises, in its lower branches, steps relating to the detection, or lack thereof, 
of an infected unit. For example, given that an animal is diseased, there may be several 
steps in the detection process (farmer notices, farmer calls vet, vet takes samples, samples 
tested for disease, test gives positive result). Whatever the number and nature of these 
steps, they may be combined to give the probability that the infected unit will not be 
detected, and likewise the probability that it will be detected. This latter probability is the 
unit sensitivity (SeU) of the surveillance process.  

In the simplest case in which there are no factors in the model which affect the 
probability of detection (for example as in Figure 11), SeU is the same for all infected 
units. All detection nodes should have been placed below the unit infection node (Figure 
11), and the same limb structure for detection nodes is to be found below each unit 
infection node in the tree. SeU is then calculated for a single unit infection node by 
multiplying together detection node branch probabilities for each limb with a positive 
outcome arising from the unit infection node, then summing these products across all 
positive outcomes arising from the unit infection node. The tree in Figure 11 gives  

SeU = FarmerSe x PSamples x PTest x TestSe (5) 

When there are factors affecting probability of detection, these will be represented by 
category nodes, which may have been placed below the unit infection node, or, if the 
factor also affects the probability of infection, above the unit infection node. In these 
circumstances, any value calculated for SeU will either be unit-specific or an average 
figure for all units or some subset of units. This will depend on the data available on units 
processed. If factor (category) levels are available for each unit processed, then unit-
specific SeU can be calculated. Where such data are not available, unit sensitivity of 
detection must be averaged across levels of factors for which the data are missing. SeU is 
thus calculated as a weighted average of subgroup sensitivities, the weights being 
subgroup category proportions (of units processed); so in this case limb probabilities are 
the product of all constituent branch probabilities and category proportions. As an 
example, suppose that in the SSC represented by the tree in Figure 10, data for some units 
do not include their UNIT DETECTION CATEGORY (denoted by UDCi; this might be, for 
example, the age of the animal). For these units  

SeU = PrSSC_UDC1 x TestSe_UDC1 + PrSSC_UDC2 x TestSe_UDC2 (6) 



where each of the values for these variables may vary among levels of other factors in the 
tree, and will thus need calculating separately for units in different limbs of the tree.  

Stepwise calculation of system sensitivity 

Units are generally grouped by some grouping factor which affects the probability that an 
individual will be infected. In general this is a matter of animals being grouped in herds. 
Within an infected herd, individual animals are considered to have a certain constant 
probability of being infected (the within-herd or unit prevalence, P*

U). The herd is either 
infected or it isn’t; if it is, then the probability that any animal will be infected is P*

U. If 
this is not true – i.e. if there is another level of grouping, such as the management group 
within the herd – then a risk category node must be included for this level too. The tree 
structure is flexible, but the essential principle is that at any node all units (or groups, 
depending on the grouping level) going down a given branch have equal probability of 
being infected or detected, depending on the node type.  

Calculation of group (herd) level 

sensitivity 

At the level of the first (lowest level) grouping node (for example, herd), results from 
multiple units are aggregated to give a group-level sensitivity (SeH) of detection. There 
are three different methods for calculating SeH, depending on the proportion of the 
population sampled:  

• where the population (group) is large and sample size is small (<10%) compared 
to group size a Binomial approach should be used.  

• where the population (group) is small and sample size is large (>10%) compared 
to group size a Hypergeometric approach should be used.  

• where the entire population (group) is included in the surveillance an Exact 
method should be used.  

Binomial approach 

The Binomial method is simplest and should be used where sample size is small (<10%) 
relative to population (group) size. The general formula for SeH in the hth group is:  

 

(7) 

where:  



• there are J branches to the UNIT RISK GROUP node,  
• nj units are processed in the jth UNIT RISK GROUP,  
• AR_URGj is the adjusted risk for the jth UNIT RISK GROUP,  
• P*

U is the unit-level design prevalence and  
• SeU is the overall unit level sensitivity of the diagnostic process (i.e. the 

combined sensitivity of all detection nodes).  

(Throughout this section refer to Figure 10 for node and variable names.)  

Alternatively, if there are no risk nodes associated with the unit infection node this 
collapses to  

 (8) 

where we have negative outcomes from nh units in the group.  

This is the probability that one or more of the units processed from group h will have a 
positive outcome, given that the group is infected; one minus the probability that all units 
will give negative results. This is the standard formula for the probability of obtaining 
one or more successes in a binomial process. The probability that any one unit will give a 
negative result is (1 – Pr(positive result)). Pr(positive result) for each unit is the 
probability that it is infected (P*

U in equation 8) multiplied by the probability that it will 
be detected if it is infected (SeU). So Pr(all nh tested units give negative results) is (1 - 
P
*
U x SeU) raised to the power of the number tested in herd h (nh).  

Hypergeometric approach 

The Hypergeometric method should be used where sample size is large (>10%) relative 
to population (group) size. This method is based on the binomial approximation to the 
hypergeometric distribution (Cameron and Baldock, 1998a). For this method, the general 
formula for SeH in the hth group is:  

 
(9) 

where:  

• SeUAvh is the average unit sensitivity for herd h,  
• nh is the number of animals sampled from herd h,  
• Nh is the total number of animals in herd h and  
• P

*
U is the unit-level design prevalence.  

Exact method 



The Exact method should be used where the entire population (group) is part of the 
surveillance system (i.e. comprehensive coverage at the group level). This method 
calculates the exact probability of one or more positives being detected, given the 
estimated number infected in the group and the probability of detection. For this method, 
the general formula for SeH in the hth group, assuming there are no risk nodes associated 
with the unit infection node is:  

 (10) 

where:  

• dh = P*
U x nh is the estimated number of infected individuals in the group of size 

nh,  
• P

*
U is the unit-level design prevalence and  

• SeUAv is the average sensitivity of the detection process at the unit level 
(combined sensitivity across all detection nodes averaged across all units and risk 
groups).  

Calculating sensitivity at higher grouping 

levels 

Moving up to the next grouping level (if there is one; we will follow the example shown 
in Figure 10), we again need to aggregate the herd sensitivities of detection to give a 
sensitivity of detection at the HERD RISK GROUP level. As at the herd-level, we should 
again use Binomial, Hypergeometric or Exact methods, depending on the proportion of 
herds in the group that have been sampled.  

Binomial approach 

As at the primary grouping level, the Binomial method should be used where sample size 
is small (<10%) relative to group size. Using the Binomial approach in a similar way as 
for the herd level, Se_HRG for the kth HERD RISK GROUP, Se_HRGk, is  

 
(11) 

where  

• there are Nk is the number of herds in the kth HERD RISK GROUP,  
• AR_HRGk is the adjusted risk for the kth HERD RISK GROUP,  
• P

*
H is the herd/cluster-level design prevalence and  

• SeHh is the herd/cluster-level sensitivity for the hth HERD RISK GROUP.  



Hypergeometric approach 

As at the group or herd level, the Hypergeometric approach should be used where a large 
(>10%) proportion of herds are included in the surveillance component. For this method, 
the general formula for Se_HRG in the kth group is:  

 (12) 

where:  

• SeHAvj is the average herd-sensitivity for the j
th risk group of J risk groups in the 

k
th HERD RISK GROUP,  

• nj is the number of herds sampled from the j
th risk HERD RISK GROUP,  

• Nj is the number of herds in the j
th risk HERD RISK GROUP,  

• ARj is the adjusted risk value for the j
th risk HERD RISK GROUP,  

• P*
H is the herd-level design prevalence,  

• N is the total number of herds in the population, and  
• PrPj is the proportion of the population in the j

th risk HERD RISK GROUP.  

Equation 12 allows for multiple risk groups within the group for which the sensitivity is 
being calculated. If there are no risk groups within the main grouping, the formula 
simplifies to:  

 
(13) 

where:  

• SeHAv is the average herd-sensitivity for herds in the kth HERD RISK GROUP,  
• nk is the number of herds sampled from the kth HERD RISK GROUP,  
• Nk is the number of herds in the kth HERD RISK GROUP,  
• ARk is the adjusted risk value for the kth HERD RISK GROUP,  
• P

*
H is the herd-level design prevalence,  

• N is the total number of herds in the population, and  
• PrPk is the proportion of the population in the kth HERD RISK GROUP.  

Exact method 

As at the primary grouping level, the Exact method should be used where the entire 
population (group) is part of the surveillance system (i.e. comprehensive coverage at the 
group level). This method calculates the exact probability of one or more positives being 
detected, given the estimated number of infected clusters in the group and the probability 
of detection. For this method, the general formula for Se_HRG in the kth group is:  



 (14) 

where:  

• dk = AR_HRGk x P*
H x nk (rounded up to the next whole number) is the number of 

infected clusters in the kth group,  
• SeHk is the average sensitivity for clusters in the kth HERD RISK GROUP and  
• P*

H is the cluster-level design prevalence.  

Approaches to calculating component 

sensitivity 

As for herd or group level calculations, component sensitivity (CSe) can be calculated in 
a number of ways. If there are several grouping levels, the methods described in the 
section Calculating sensitivity at higher grouping levels can be used. However, where 
there is only a single grouping level (for example herd or farm level), CSe can be 
calculated directly from SeH values using Binomial, Hypergeometric or Exact methods, 
depending on coverage and sampling proportions:  

Binomial 

The Binomial approach should be used where a small (<10%) proportion of herds are 
included in the surveillance component, with CSe calculated as:  

 
(15) 

where:  

• EPI_Hi is the effective probability of infection for the ith herd from a population 
of I herds,  

• SeHi is the herd (or cluster) -level sensitivity for the ith herd  

Hypergeometric 

The Hypergeometric approach should be used where a large (>10%) proportion of herds 
are included in the surveillance component, with CSe calculated as:  

 

(16) 



where:  

• SeHAvj is the average herd-sensitivity for the jth risk group of J risk groups in the 
population,  

• nj is the number of herds sampled from the jth risk group,  
• Nj is the number of herds in the jth risk group,  
• ARj is the adjusted risk value for the jth risk group,  
• P

*
H is the herd-level design prevalence,  

• N is the total number of herds in the population, and  
• PrPj is the proportion of the population in the jth risk group.  

Exact 

The Exact method should be used where all herds are part of the surveillance component 
(comprehensive coverage), with CSe calculated as:  

 (17) 

where:  

• SeHAv is the average herd-sensitivity for all herds in the population, and  
• D is the estimated number of infected herds (P*

H x N)  

Calculating Country-level (system) 

sensitivity 

This needs to be re-done  

This process may be continued up through any number of grouping levels, progressively 
aggregating the results and calculating group-level sensitivity estimates, accounting for 
any clustering within groups. At the top (country) level, the system sensitivity (SSe) is 
often given by an aggregation of compartment-level sensitivities thus:  

(18) 

is this right? Shouldn’t it be adjusted risk, not R_C?  

where L is the number of compartments in the country, and is the compartment-level 
sensitivity for the lth compartment. SSe is then our estimate of sensitivity for one 
component of the surveillance system.  



Category proportions 

The observant reader will have noted that the branch proportions at category nodes were 
used in analysis under the assumption of independence, but seemed to be ignored in the 
clustering model.  

Category node branch proportions are only used in analysis of the tree where data on 
factor levels are not available for individual units processed by the SSC. Where the factor 
levels are known for each category node in the tree, we can apply the appropriate 
probabilities of infection and detection to each unit in our calculation of system 
sensitivity. Where we do not have these data for each unit, we need to apply average 
probabilities of infection and detection to units and groups in the calculations. Average 
probabilities are calculated as weighted averages, using branch proportions of category 
nodes as weights.  

For example, suppose Pr(detection) for an infected beef herd is SeH_B and Pr(detection) 
for an infected dairy herd is different (SeH_D). The proportion of dairy herds in our 
reference population is PrP_D, and PrP_B is (1 – PrP_D). Now if we know for each 
herd processed whether it is a dairy or beef herd, we can apply the relevant SeH_D or 
SeH_B. But if we do not know, we will use the average probability of detection for a herd 
selected randomly from the SSC reference population, which is  

SeH = PrP_D × SeH_D + PrP_B × SeH_B (19) 

It is possible that, although we do not know the herd type for each herd processed, we do 
know the proportion of the processed herds that were dairy herds (PrSSCD). In this case it 
would be preferable to use the proportions of units processed as weights for calculation of 
the average SeH, rather than PrP_D and PrP_B:  

SeH = PrSSC_D × SeH_D + PrSSC_B × SeH_B (20) 

This is clear for actual SSC data. How to apply the same rules for calculation of the fully 
representative system is not immediately obvious, but follows the same principles. With 
the representative sampling system, we know the branch proportions for all category 
nodes from industry statistics or expert opinion. Armed with these figures we can 
calculate expected probabilities of infection or detection as above, effectively applying 
the category proportions as weights. Alternatively, we can simulate data using the 
category proportions, and generate a data set which is representative of the population, 
and in which factor levels for each unit are known. This can then be analysed by applying 
specific Pr(detection) and Pr(infection) figures to each unit, in just the same way as was 
done with the actual SSC data for which factor levels were all known for each unit.  

Sensitivity ratio (SR) 



This is the ratio of the calculated sensitivities of two SSCs, or two surveillance systems. It 
is used to evaluate the relative sensitivity of the SSC, independent of assumptions about 
the absolute values of design prevalences. It is calculated by comparing the sensitivity of 
the SSC being analysed (including differential risks among sub-populations) with a 
hypothetical version of the same SSC which uses fully representative sampling from the 
entire population (and the same differential risks among sub-populations). The latter 
represents the ‘representative standard’ approach to surveillance and is a useful standard 
for comparison.  

The process for calculating the SR is as follows:  

1. Calculate the sensitivity of the SSC using a stochastic scenario tree model, as 
described above, using actual data on units processed. The result is the actual 
system sensitivity (CSeActual).  

2. Recalculate the sensitivity using a “data” set prepared with the same total number 
of units processed, but with these units distributed representatively over all 
population subgroups (i.e. proportions of units etc. falling into each population 
subgroup are the same in the “representative data” set as in the reference 
population). In this representative data set every unit in the population would have 
an equal chance of detection. This gives the hypothetical fully representative SSC 
sensitivity (CSeRepresentative).  

     3. Then    (21) 

The SR measures the performance of the actual SSC being modelled relative to the 
hypothetical representative system. A SR could also be calculated for the whole 
surveillance system (combination of multiple SSCs) if required. A SR of 1 indicates that 
the SSC being studied is equally effective at detecting disease as one using representative 
sampling. A SR greater than one indicates that the SSC is better than one using simple 
random sampling, due to the fact that it targets animals at greater risk of disease. 
Conversely, a SR of less than one indicates that the SSC is less effective than one using 
simple random sampling, due either to biased sampling of animals with lower risk of 
disease, or to a failure to sample units in one or more sub-populations (ie inadequate 
coverage of the SSC reference population).  

As an output of the stochastic scenario tree model, SR will, in practice, be estimated as a 
frequency distribution.  

A sensitivity ratio can also be calculated to compare the efficacies of two SSCs, assuming 
the same values have been used for inputs common to both scenario trees.  

Combination of data from multiple 

sources 



In order to gain the full benefit of the analysis of multiple sources of evidence for 
freedom from disease, it is necessary that the results of these analyses be able to be 
combined into a single estimate of the confidence in the combined surveillance systems.  

Cannon (2002) described two techniques for the combination of levels of confidence 
from multiple sources of evidence. The first uses simple combination of probabilities, 
based on the following formula:  

 

(22) 

where j denotes the component of the total surveillance system. The second is a 
qualitative point system, which is targeted at application in situations without access to 
quantitative analytical resources (e.g. herd classification schemes). The former approach 
is used in the case study presented here, but both suffer from the problem that they 
assume that the surveillance systems being analysed are independent. However, this is 
often not the case.  

Accounting for lack of independence 

This section proposes a method of combining the sensitivity of different SSCs to provide 
an overall measure of sensitivity that takes into account lack of independence among 
SSCs, and is based on the scenario-tree methodology already described.  

Estimating system overlap 

Consider an analysis of two SSCs, using two different scenario trees. Using the approach 
of step-wise calculation of sensitivities at different grouping levels, the sensitivity of, for 
example, each farm, and each county is calculated. Not all farms, nor all counties, may be 
represented in the first SSC. The second SSC follows a similar grouping structure but 
with a range of different nodes and probabilities defining that SSC. During stand-alone 
analysis of each scenario tree (as described above), the prior effective probability of a 
group being infected is the group-level design prevalence P*

H multiplied by any 
applicable differential risk AR, and a posterior estimate of this probability (PH) may be 
calculated (using Bayes theorem; equation 4), given the number of negative units 
processed from that group; P*

U; any differential risks applied at the unit level; and SeU.  

Once the analysis of the first SSC is complete, PH is available for each group at each 
grouping level. For independent analysis of the second scenario tree, we start with the 
same prior effective probabilities of infection as were used for the first (i.e. P* and 
applicable differential risk values). However, to account for the information already 
gathered from the first SSC, group-level posterior probabilities of infection from the first 
SSC are used as priors in the second tree, replacing P* values. We thus account for the 
fact that we already have some information about the status of certain farms and counties 



(for example) from the first SSC, so information gathered in the second SSC does not 
contribute as much to our knowledge. (Refer to Advanced approach – accounting for lack 
of independence among units above.)  

Some farms in the second SSC may not have been examined in the first SSC, and for such 
groups there is no prior information for analysis of the second SSC, and P* values are 
used as priors. Where there is no overlap in the farms or other groups examined, there is 
clearly no prior information available from the first SSC, and the second SSC can be 
considered to be independent.  

This procedure can be continued for multiple SSCs. Where a farm (for example) appears 
in a third SSC, and is also present in the second, its PH from the second is used as the 
prior for the third. Where it appears in the first and third, but not the second, then the 
posterior from the first is used as the prior for the third.  

Once posterior estimates of Pr(Infected) have been inserted as priors into each successive 
model in a chain-like fashion, the sensitivity of each SSC can be calculated. Because the 
resulting sensitivities have already been adjusted to take into account their lack of 
independence, the results of analysis of each scenario tree can then be considered 
independent of each other, and combined using equation 22.  

Incorporating data from random surveys 

In some instances, it may be desirable to combine data from targeted surveillance based 
on risk with data from a representative survey, to improve the overall sensitivity of the 
surveillance system (SSe) and the probability of freedom for the population. For example, 
a large volume of data may be available from export testing for a particular disease and is 
supplemented by a properly structured representative survey of the population. In this 
situation, analysis of the biased sampling requires a scenario-tree approach, whereas 
analysis of the representative survey data could be achieved much more simply using 
standard methods.  

The simplest way to combine multiple data sources is therefore to calculate a component 
sensitivity for each data set and combine them assuming independence. For this 
approach, CSe for the targeted surveillance component would be calculated using a 
scenario tree approach to account for biasing of sampling and variations in risk and 
detection between sub-groups of the population, while CSe for the representative sample 
could be calculated using the standard methods that would normally be used for such a 
survey. The two component sensitivities are then combined to calculate system sensitivity 
(SSe) using Equation 22.  

This approach is appropriate when there is reasonable independence between the two 
samples, but will overestimate the combined CSe if there is substantial overlap between 
them (for example the same farms are represented in both groups). Where this is the case 
(significant overlap between samples) the preferred approach is to construct a second 



scenario tree for the representative sampling and to calculate the additional sensitivity 
generated by the biased sampling after adjusting for overlap between the two samples 
(see previous section Accounting for lack of independence). The two CSe estimates are 
then combined, again using Equation 22.  

Calculation of the probability of country 

freedom 

To this point, the purpose of the analysis has been to calculate the sensitivity of the 
surveillance system, or the probability that the system would be able to detect disease if it 
were present (at the design prevalence). This may be expressed as Pr(S+ | D+). As has 
been shown, the system sensitivity is a valuable tool in assessing the performance of the 
system. However, it is based on a hypothetical assumption – the probability of detecting 
disease if it were present in the population. This is a measure of the quality of the 
surveillance system, but it does not directly answer the question most trading partners are 
likely to be asking – is the country actually free from disease. Expressed in probability 
notation, this is Pr(D- | S-) or the probability that the country is free from disease, given 
that the surveillance system has failed to find disease.  

This question is analogous to those posed in the interpretation of diagnostic tests. Given 
that a test T has produced a negative result, what is the probability that that the animal 
does not have the disease? This is negative predictive value (NPV) of the test, and is 
calculated using Bayes’ theorem. Intuitively, in the diagnostic testing framework, the 
probability of an animal being truly negative if it tests negative is the proportion of all 
negative results (true and false) that are truly negative:  

 

In terms of sensitivity and specificity this can be expressed as:  

 

In this case, the prevalence of disease in the population (P) is used as an estimate of the 
prior probability of any particular animal being diseased. Adjusting this prior probability 
with new evidence (the test result) allows a posterior probability to be calculated.  

The same principles can be applied at the country level, using the same formula. Using 
the scenario tree, we have calculated the sensitivity of the SSC.  

The negative predictive value, or the probability that the country is free from disease, 
given that the surveillance system did not detect disease, can be calculated using the same 
formula, by substituting system sensitivity for individual animal test sensitivity, 1 for 
specificity, and prior probability of disease being present in the country for prevalence:  



 
(23) 

This is a simple approach to calculating the value of interest. As with the other 
calculations presented, it is shown here in a deterministic form, but can be implemented 
within the model to provide a stochastic version yielding a probability distribution.  

Selection of a prior 

A problem with this approach is the difficulty in selecting an appropriate value for the 
prior probability of the presence of disease in a country. The choice of prior value has a 
significant impact on the final estimate of the probability of country freedom, as shown in 
Table 8.  

Table 8 Probability of country freedom from disease (at P*)calculated using Bayes’ 
theorem, using a system specificity of 1, and varying system sensitivity (SSe) and prior 
probability of the country being infected (Prior)  

  SSe 

Prior 
0.10

0 
0.20

0 
0.30

0 
0.40

0 
0.50

0 
0.60

0 
0.70

0 
0.80

0 
0.85

0 
0.90

0 
0.95

0 
0.99

0 
0.99

9 

0.99

0 
0.01
1 

0.01
2 

0.01
4 

0.01
7 

0.02
0 

0.02
5 

0.03
3 

0.04
8 

0.06
3 

0.09
2 

0.16
8 

0.50
3 

0.91
0 

0.95

0 
0.05
5 

0.06
2 

0.07
0 

0.08
1 

0.09
5 

0.11
6 

0.14
9 

0.20
8 

0.26
0 

0.34
5 

0.51
3 

0.84
0 

0.98
1 

0.90

0 
0.11
0 

0.12
2 

0.13
7 

0.15
6 

0.18
2 

0.21
7 

0.27
0 

0.35
7 

0.42
6 

0.52
6 

0.69
0 

0.91
7 

0.99
1 

0.80

0 
0.21
7 

0.23
8 

0.26
3 

0.29
4 

0.33
3 

0.38
5 

0.45
5 

0.55
6 

0.62
5 

0.71
4 

0.83
3 

0.96
2 

0.99
6 

0.70

0 
0.32
3 

0.34
9 

0.38
0 

0.41
7 

0.46
2 

0.51
7 

0.58
8 

0.68
2 

0.74
1 

0.81
1 

0.89
6 

0.97
7 

0.99
8 

0.60

0 
0.42
6 

0.45
5 

0.48
8 

0.52
6 

0.57
1 

0.62
5 

0.69
0 

0.76
9 

0.81
6 

0.87
0 

0.93
0 

0.98
5 

0.99
9 

0.50

0 
0.52
6 

0.55
6 

0.58
8 

0.62
5 

0.66
7 

0.71
4 

0.76
9 

0.83
3 

0.87
0 

0.90
9 

0.95
2 

0.99
0 

0.99
9 

0.40

0 
0.62
5 

0.65
2 

0.68
2 

0.71
4 

0.75
0 

0.78
9 

0.83
3 

0.88
2 

0.90
9 

0.93
7 

0.96
8 

0.99
3 

0.99
9 

0.30

0 
0.72
2 

0.74
5 

0.76
9 

0.79
5 

0.82
4 

0.85
4 

0.88
6 

0.92
1 

0.94
0 

0.95
9 

0.97
9 

0.99
6 

1.00
0 

0.20

0 
0.81
6 

0.83
3 

0.85
1 

0.87
0 

0.88
9 

0.90
9 

0.93
0 

0.95
2 

0.96
4 

0.97
6 

0.98
8 

0.99
8 

1.00
0 



0.10

0 
0.90
9 

0.91
8 

0.92
8 

0.93
7 

0.94
7 

0.95
7 

0.96
8 

0.97
8 

0.98
4 

0.98
9 

0.99
4 

0.99
9 

1.00
0 

0.05

0 
0.95
5 

0.96
0 

0.96
4 

0.96
9 

0.97
4 

0.97
9 

0.98
4 

0.99
0 

0.99
2 

0.99
5 

0.99
7 

0.99
9 

1.00
0 

0.01

0 
0.99
1 

0.99
2 

0.99
3 

0.99
4 

0.99
5 

0.99
6 

0.99
7 

0.99
8 

0.99
8 

0.99
9 

0.99
9 

1.00
0 

1.00
0 

0.00

1 
0.99
9 

0.99
9 

0.99
9 

0.99
9 

0.99
9 

1.00
0 

1.00
0 

1.00
0 

1.00
0 

1.00
0 

1.00
0 

1.00
0 

1.00
0 

Extremely high system sensitivities provide a high probability of freedom regardless of 
the prior probability of infection, while low prior probabilities of disease provide a high 
probability of freedom regardless of the system sensitivity.  

A number of approaches have been suggested for selection of the prior probability for 
this calculation:  

1. The prior probability in this calculation is analogous to the prevalence (proportion 
of diseased animals in the population) in the NPV calculation. The same approach 
could be used to calculate the proportion of infected countries in the population of 
countries. The difficulty is identifying the appropriate population of countries. 
Using the whole world is probably not appropriate, as the risk of disease in 
different countries varies considerably, both for geographical and developmental 
reasons. Narrowing the group to ‘comparable’ countries such as a region is also 
problematic, as the definition of what is comparable will greatly influence the 
prior, and in most cases when demonstrating disease freedom, comparable 
countries will be considered as those that are free from disease, giving a prior of 
0. This approach may therefore not be considered to be particularly valid or 
practical.  

2. Estimation of a prior based on expert opinion. This is likely to be very difficult to 
get a reliable an internationally acceptable estimate (or distribution) using this 
approach, but it may be considered.  

3. The use of a ‘neutral’ prior, such as 50% (point value). In essence, this assumes 
no useful prior information about the disease status. This is a very conservative 
approach, and naturally ignores any historical information on freedom that may be 
available.  

4. The use of estimates of disease probability gained from previous analysis of 
surveillance. This approach allows incorporation of historical surveillance 
findings, and a link with import risk analysis, and is the approach we recommend 
(see next section).  

Temporal discounting of historical 

surveillance data 



When a country is free from a disease and is conducting ongoing surveillance for that 
disease, there is a continuous stream of negative surveillance data, perhaps supplemented 
by periodic additional negative surveillance information such as surveys. Each “survey”, 
or temporally contained SSC, can be analysed as described above to give a CSe for the 
SSC. The continuous stream of data, however, must be divided into appropriately sized 
slices for analysis, the size of the slice being defined temporally by the length of the 
surveillance time period. We have already discussed how to determine the surveillance 
time period for analysis (TP), and suggested that in most cases either one month or one 
year will be appropriate. So our continuous stream of surveillance data in an ongoing SSC 
will be divided into sequential slices for analysis, each of length TP.  

When assessing (subjectively) whether a population is free from a disease we do not 
consider only the last TP, for which we have calculated the CSe; we also look at the 
history. How long has this negative surveillance been going on? When was the disease 
last seen? Have there been any other historical surveillance activities to add support to the 
claim to freedom? In other words, we value past negative surveillance findings. When 
looking at the most recent TP’s findings, we therefore make a mental assessment of what 
we believe to be the “background” status of the population, based on its history; onto 
which we will add the evidence of the most recent TP. In calculating the (posterior) 
probability that the population is free from the disease, we add the evidence from the 
current surveillance findings (the most recent TP) to our prior belief, and this prior belief 
is based on the posterior probability from the previous TP, if we assume that this 
recalculation is done at the end of every TP.  

Another important component of this assessment is to ask the question: what biosecurity 
measures are in place to prevent the disease getting into the population?  

Method 

If we have an ongoing surveillance system which delivers negative results continuously 
over time, we divide the surveillance data into equal time periods of an appropriate 
length. At the end of each TP the surveillance data gathered during that TP are used to 
calculate a sensitivity (SSetp) for detection of the presence of the disease under 
consideration at the design prevalence P*. The probability that the country is free from 
disease (at P*) at the end of the TP (PostPFreetp) can then be calculated as the negative 
predictive value of the surveillance system, PR(D-|S-):  

 
(24) 

where PriorPInftp is an estimate of the probability that the country (or zone or 
compartment) is infected at P* or greater, at the end of the TP, prior to application of the 
surveillance results (and PriorPInftp = (1 - PriorPFreetp)). Our surveillance system has 
perfect specificity, so this simplifies to  



 
(25) 

which is the same result as we obtained in (24) above  

 

Figure 12 Probability of freedom at P* over time  

If we select a point in time which marks the beginning of our ongoing surveillance 
system (delivering negative results) and refer to it as the start of TP 1 (tp = 1), when we 
come to calculate PostPFree1 we might choose to be very conservative in estimating 
PriorPInf1 and say that it is 0.5, as in Figure 12. At the end of the TP we calculate SSe1, 
and use it to estimate PostPFree1. Using equation 25 PostPFree1 will have a value 
greater than or equal to (1 - PriorPInf1), since in the worst case scenario (ie absence of 
surveillance; SSe1 = 0) our estimate of the probability of freedom will be unchanged. Any 
(negative) surveillance evidence at all can only increase our estimate of PostPFree1.  

At the end of TP 2 we again calculate SSe2, and we now need a value for PriorPInf2 in 
order to apply equation 25 again. It is reasonable to suppose that our estimate of 
PriorPInf2 should be less than PriorPInf1, since we concluded after TP 1 that the 
probability the country was infected was (1 - PostPFree1), which was less than 
PriorPInf1, as a result of our surveillance during TP 1. However, in estimating PriorPInf2 
we should take account of the fact that disease could have entered the country during TP 
2. This is the only possible reason for the probability that the country is infected (at P*) to 



have increased since we calculated PostPFree1
9, and forms the basis of the adjustment 

that must be made to PostPFree1 in estimating PriorPInf2.  

[9] It is also possible that the probability that the country is infected has decreased, due either to 
spontaneous disappearance of infection from the population (including inadvertent culling), or to an 
eradication program. Since the country is believed to be free, an active eradication program is highly 
unlikely, and for most diseases of significance the probability of spontaneous disappearance is probably 
negligible.  

Probability of disease introduction – 

interface with IRA 

The probability that infection has been introduced into the population during TP 2 is, in 
import risk analysis (IRA) terminology, the probability of release and exposure during 
the TP; here we will refer to PIntrotp. Figure 13 shows three arbitrary introductions of 
infection (A, B & C).  

 

Figure 13 Pr(Freedom at P*) over time with disease introductions  

Typically, disease spread follows an exponential curve initially, and this is illustrated in 
Figure 13. We are assessing the probability of country freedom at the design prevalence 
P*, and not making any assertions about disease present at lower prevalence10. As Figure 



13 illustrates, the interval from introduction of disease to the prevalence P* being reached 
may be several TPs11, and the necessary adjustment to PostPFree1 should actually 
involve the probability that previously introduced infection reached a level of P* during 
TP 2. However, if we assume that  

a) the likely spread curve (the dynamics of potential disease spread in the population) 
remains the same over time; and  

b) the probability of introduction is constant;  

then the probability of disease reaching P* during TP 2 is equal to PIntro2
12. In 

determining the appropriate adjustment to PostPFree1 to derive PriorPInf2 we must take 
into account the possibility that disease (at ≥P*) was in fact present at the end of TP 1; a 
possibility represented by the probability (1 - PostPFree1). So it is possible for disease to 
be introduced (or cross the P* threshold) during TP 2 (with probability PIntro2) whether 
or not it was present (at ≥ P*) at the end of TP 1. The appropriate adjustment is therefore  

PriorPInftp = PostPInftp-1 + PIntrotp - PostPInftp-1 x PIntrotp (26) 

or  

PriorPInftp = (1 - PostPFreetp-1) + PIntrotp - PIntrotp(1 - PostPFreetp-1) (27) 

This is the formula used to generate the values for PostPFreetp and PriorPInftp in Figure 
12 & Figure 13, with a constant PIntro as shown. In these examples SSetp is allowed to 
vary over time (~N(SSeMean, SSeSD)) with the values for SSeMean and SSeSD as shown 
on the figures. The value selected for PIntro is also shown on each figure. A range of 
summary curves for PostPFree is also shown in Figure 14.  



 

Figure 14 Pr(Freedom at P*) for different SSe/PIntro combinations  

[10] If disease is detected the country is pronounced infected, whatever the prevalence; the arguments here 
apply only to situations involving negative surveillance findings.  

[11] Length of TP for analysis should be determined with likely spread curves in mind.  

[12] If these assumptions cannot reasonably be made, adjustments to PostPFree1 in order to derive 
PriorPInf2 will need to be based on TP-by-TP modelling of disease introduction and spread.  

Acceptable Level of Protection (ALOP) 

It will often be the case that the results of a quantitative IRA are not available for 
estimating PIntro. Given that conscientious members of the WTO will always manage 
risks according to the SPS agreement, the risk associated with introduction of the disease 
in question may be supposed always to be consistent with the country’s ALOP, so this 
may be used as the basis for a default value for PIntro. We can estimate roughly the 
probability of release and exposure (ie PIntro) as the maximum level of acceptable risk 
consistent with the ALOP, divided by the average consequences of introduction of the 
disease. In situations where specific IRA results are not available, this estimation of 
PIntro will certainly be a qualitative process. Biosecurity Australia’s risk estimation 
matrix (Figure 15) is useful to visualise how it works. The maximum acceptable risk 



level is shown in white; Very Low for Australia. The column for the appropriate 
consequence category (say Extreme for FMD) is followed to the white cell, and the 
likelihood category associated with this is read off at the left end of the relevant row – 
Negligible in this case. For a disease with Low consequences, the acceptable PIntro is 
Low.  

If we then convert this qualitative category into the quantitative probability range that it 
represents, we have a numerical estimate for PIntro derived in a reasonably transparent 
manner.  

  Consequences 

Likelihood of release 

and exposure per 

time period 
Negligible Very low Low Moderate High Extreme 

High Negligible Very low Low Moderate High Extreme 

Moderate Negligible Very low Low Moderate High Extreme 

Low Negligible Negligible Very low Low Moderate High 

Very low Negligible Negligible Negligible Very low Low Moderate 

Extremely low Negligible Negligible Negligible Negligible Very low Low 

Negligible Negligible Negligible Negligible Negligible Negligible Very low 

Figure 15 Biosecurity Australia’s risk estimation matrix for qualitative categories. 
Australian ALOP is represented by Very Low risk.  

Another potential approach to developing an on-going level of confidence in freedom 
based on continuing negative surveillance is to determine the desired probability that the 
country is free at P* (presumably as prescribed by the Terrestrial Animal Health Code) 
and the sensitivity of the ongoing surveillance system. From these two we can calculate 
the maximum level of PIntro which will result in maintenance of the desired PostPFree, 
using a simple model based on (2) and (4) above. This potentially gives a transparent way 
of calculating the probability component of acceptable risk consistent with ALOP, and 
even of determining ALOP, for those motivated by a simple, pragmatic interpretation of 
the SPS agreement.  

Stochastic modelling in the context of 

disease freedom - Principles 

In its simplest form, a scenario tree is a branching series of probabilities. Calculation of 
the probability of an event involves the multiplication of each probability down the 
branches of the tree, and summing the result for each branch that will produce the 
specified event. All relevant outcomes/probabilities to produce such events should be 



considered. This simple form of the tree is purely deterministic, in that it will produce the 
same result every time you evaluate the same probability.  

Unfortunately, many of the probabilities commonly required for inclusion in the scenario 
tree are not known fixed values. This is because there is either some uncertainty about 
their true value, or the true value is not fixed, but varies. Stochastic (or ‘Monte Carlo’) 
modelling is the technique used to capture this uncertainty and/or variability. It is 
important to differentiate between the two concepts because uncertainty can be reduced 
through generation of more information, whereas variability is a biological fact. This 
must also be considered when interpreting the output of such stochastic models.  

In stochastic modelling, the probabilities in the scenario tree are defined not as fixed 
values, but as distributions (described by specified parameters). When the probability of 
the model outcome is calculated, values for each of the branch probabilities used in the 
model are selected at random from the distributions specified for each of them. This is 
done repeatedly (multiple “iterations”), and for each iteration a different value is selected 
from the specified distribution for each branch probability. The result is therefore 
different for every iteration, depending on the values of the different branch probabilities 
chosen.  

For a single iteration, this provides little benefit. A new result is obtained, somewhat 
different to that obtained by using fixed probabilities. This result is just as valid as the 
result based on fixed probabilities, as it is based on the possible range of values for the 
branch probabilities. However, it is virtually impossible to interpret such output on its 
own. Instead, the value of stochastic modelling which uses distributions as inputs, is that 
it can produce a distribution as its output. This is a achieved by running the model many 
times until the range of different results that are produced build up to form a distribution. 
The distribution indicates the range and frequency of different results that may occur in 
the system, given the variability and uncertainty in the input probability estimates.  

Practical implementation 

The process of implementing a stochastic scenario tree model is relatively 
straightforward. It is made vastly easier by the existence of dedicated stochastic 
modelling software such as PopTools or @RISK, which work with existing spreadsheet 
software such as Microsoft Excel.  

Broadly speaking, the steps are:  

1. Build a deterministic model using a spreadsheet. Fixed probabilities (the most 
likely values) for each branch of the tree will be used at this stage. These can be 
used to check the plausibility of the model. Refine the model accordingly and 
assign a range of values for each probability.  



2. Decide on the appropriate type of distribution to describe more accurately each of 
these assigned values to the probabilities. Note that some of the input probabilities 
should not be described by a distribution, but a fixed value, because either:  

o They define the assumptions upon which the model is based (for instance, 
the design prevalence values); or  

o The probability or proportion is in fact known with certainty and non-
varying. This may be because exhaustive data (eg census data on 
production types) is available to calculate directly the exact 
probability/proportion.  

3. For each distribution, determine or estimate the appropriate parameters to 
describe the distribution.  

4. Enter the parameters in a list on your model spreadsheet.  
5. Modify your model by replacing the fixed branch probabilities with the 

appropriate probability distribution function (many are available in both PopTools 
and @RISK, describing a wide range of distributions), referencing the parameter 
list already drawn up.  

6. Set up the necessary simulation options, such as naming outputs, report types, 
number of iterations etc.  

7. Run the model and examine the output distribution that is produced. The output 
distribution of the probability of the event of interest can be summarised using 
standard statistics (mean, mode, percentiles).  

Most of these steps are straightforward once one is familiar with the modelling software. 
The most challenging step is determining the appropriate distribution (and associated 
parameters) to describe input probabilities and proportions. A full discussion of the best 
way to go about this process is beyond the scope of this course. For a more detailed 
discussion of distributions in stochastic modelling, see Vose (2008). The following rules 
of thumb may be useful.  

• Probabilities derived from expert opinion: use PERT (minimum, most likely, 
maximum) or BETA(a1, a2), where a1 and a2 are derived from the mode (most 
likely) and 95 (or other) percentile supplied by the expert(s), using software such 
as Betabuster or the online calculator 
http://www.ausvet.com.au/pprev/content.php?page=BetaParams  

• Probabilities based on observed distributions: use non-parametric functions 
including Histogram, General, Discrete, Cumulative.  

• Distribution of the time between randomly occurring events: Exponential (mean 
time between events).  

• Distribution of the time taken for a number of events to occur: Gamma (number 
of events, mean time between events).  

• Distribution of the number of successes from a number of independent trials with 
equal probability of success: Binomial(number of trials, constant probability of 
success).  

• Distribution of the number of independent trials (x) with equal probability of 
success (p) to observe a given number of successes (s): x=s + NegBin(s,p). The 



geometric distribution is the special case of the negative binomial, where the 
number of successes is one.  

• Estimation of population prevalence from results of a representative survey which 
found s infected among n sampled: Beta(s + 1, n – s + 1)  

If the model is correctly set up, and you have specified your calculated system sensitivity 
as the output variable, when the simulation is complete, you will be presented with a 
histogram showing the frequency distribution of the calculated system sensitivity.  

In calculating the sensitivity of a SSC using a stochastic scenario tree model, probability 
distributions are used primarily to represent the uncertainty of model parameters. If 
“data” are simulated, however (e.g. in calculating SSeRepresentative for sensitivity ratios) 
they may also be used to model variability. In this situation it may be considered 
important to separate the effects of uncertainty and variability in the analysis – see Vose 
(2008) for guidance on how to achieve this.  

Data from multiple sources 

The combination of data from multiple surveillance components is useful in practice 
because of the gain in sensitivity of the whole surveillance system. However, this gain 
may be less than expected due to the dependence among the components. In Combination 
of data from multiple sources, we showed a simple formula that allows the combination 
of evidence under the premise of independence. In the same section, an approach was 
sketched to solve this problem. In the next few sections, we shall focus more on the 
reasons of dependence among surveillance components.  

Sampling probability on animal level 

On the animal level, observations may be dependent because they were made on the same 
animal (eg testing of live animals and testing at slaughter).  

The sampling probability can be established if the sampling coverage (empirical 
sampling fractions) is known. A dependency can occur as a result of a correlation of the 
sampling probabilities among the surveillance components and implies also a correlation 
of the probability of not being selected for testing. Surveillance components may have 
specific escape routes, ie missing value processes that are correlated with some 
informative factors. Missing values for risk animals could occur simultaneously in 
different surveillance components. In the most extreme case, the disease of interest could 
be the exclusion factor.  

If the animals of the population are individually registered and the surveillance data are 
indexed with the animal numbers, the degree of overlap between the sampling coverage 
of the two (or more) surveillance components can be assessed quantitatively. The joint 
sampling coverage on animal-level could be directly estimated and used to adjust for this 



type of lack of independence. Reasons for correlated sampling probabilities should be 
investigated to rule out substantial biases.  

Sampling probability on herd level and 

for population strata 

The principles described above apply also to herds or other primary sampling units as 
well as to relevant strata of the population. Examples for the latter are production types 
with less intensive surveillance coverage. Backyard or pet animals are typically excluded 
from any regular surveillance. Intensive production types may be over-represented in 
many of the surveillance components, which would lead to correlation of the sampling 
probabilities on herd-level. This could potentially lead to a bias towards high values of 
sensitivity. Use of risk category nodes representing such strata can deal with such biases 
within a SSC.  

Base-line dependence among surveillance 

components 

Even when the sampling probabilities of the surveillance components are independent, a 
certain overlap of testing will occur just by chance at both animal-level and herd-level. 
This overlap of sampling can be estimated using the marginal sampling probabilities of 
the single components.  

Dependence among diagnostic methods 

False negative results of the diagnostic tests used in different components may be 
correlated (see section on Multiple diagnostic tests). If this is the case, the gain by using 
multiple surveillance components is less that expected. The estimation of error 
correlation of diagnostic tests is not trivial but possible if gold standard information is 
available (Hanson et al., 2000).  

Estimating the surveillance system's 

sensitivity under dependence 

The different sources of dependence among SSCs can be analysed separately. Methods to 
establish the surveillance system's sensitivity that account simultaneously for different 
reasons for dependence are still lacking.  



Current issues 

In this section, we would like to share our view of priority areas for research into the 
methods in the area of disease freedom.  

Independence of tests 

The estimation of error correlations for diagnostic tests used in surveillance systems is an 
important milestone. Methods that require a gold standard could eventually be 
supplemented with latent class analysis approaches.  

Independence of surveillance system 

components 

The dependence structure among the outcomes of surveillance components should be 
thoroughly investigated for some well-documented systems. Specialised statistical 
methods should be developed that allow unbiased estimates of the systems' sensitivity. 
These methods should also be suitable to investigate the surveillance coverage of the 
population.  

Eliciting and combining expert opinion 

If data are to be replaced with expert opinion, the methodology of eliciting and 
summarising those opinions becomes a central quality criterion. These methods should 
take into account the size of the expert panels (usually small), personal agendas, levels of 
expertise and sociological group phenomena. Approaches to resolve conflicting opinions 
should be critically assessed.  

Non-quantitative analyses 

The methods developed in this project and applied in the various case studies for analysis 
of scenario trees are strictly quantitative in nature. They rely on quantitative values 
derived either empirically or from expert opinion as inputs for probabilities, proportions 
and relative risks in the scenario trees. These inputs are expressed as either fixed values 
or as specified probability distributions. Similarly, model outputs such as component 
sensitivity and probability of freedom are also expressed quantitatively, usually as 
probability distributions.  

One objective of this project was to investigate the potential for use of qualitative 
methods as an alternative to quantitative methods when quantitative values are not 



available. In this context qualitative methods are ones where input values are expressed 
as qualitative statements (words) such as “low”, “moderate”, “high”, etc, rather than as 
quantitative values. The conclusion from this investigation is that qualitative methods are 
not appropriate or applicable for this methodology. This conclusion is based on the fact 
that the methodology relies on complex calculations for the calculation of adjusted risks, 
expected probability of infection and unit and component sensitivities which would not 
be possible using qualitative values. Similarly, semi-quantitative methods based on an 
arbitrary scale or raking would also not be possible with this method. In addition, the 
method used is flexible enough to allow for uncertainty and imperfect knowledge about 
parameters through the use of expert opinion and appropriate probability distributions to 
express the associated uncertainty, so that non-quantitative methods are not needed.  

One possible alternative for incorporation of non-quantitative values would be to use an 
arbitrary scale of probability and risk values to convert qualitative terminology into 
quantitative ranges, as has been used in import risk analysis. In fact this approach is 
likely to be more difficult and prone to error because no single conversion scale is likely 
to adequately express the appropriate ranges of values for different parameters such as 
population proportions, test sensitivities and relative risk values, resulting in an 
excessively complex and cumbersome approach. This approach is therefore not 
recommended and is unnecessary, given the ability to directly express values as 
probability distributions.  
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Veterinary Research, undertaken by Tony Martin and Angus Cameron, with the 
assistance of Matthias Greiner. Click here for more information.  

Zero Prevalence Workshop 
The original ideas for this methodology were initially crystalised at a workshop 
convened by Mo Salman in Fort Collins, Colorado, immediately after the 2000 
ISVEE meeting, and attended by many leading epidemiological researchers.  

AusVet Animal Health Services 
In addition to providing four of the leading scientist involved in the 
methodologies' development, AusVet also developed the software and provides 
the web server and web space to host this web site.  

Suggested notation 

In this document:  

• node names are shown in small capitals (e.g. HOUSING)  
• branch names are shown in italics (e.g. Dairy)  
• variable names are shown in italics (e.g. PrSSC_Dairy)  

Variable names 
Design prevalence 



Sensitivity notation 
Branch proportions 
Risk nodes  

Variable names 

• Variable names to be based on abbreviations of descriptions of the quantities to 
which they apply, e.g. Se for sensitivity; PrP for Population Proportion.  

• The conditionality of all variables on all preceding nodes in the tree is assumed, 
and not explicitly included in their names, except where such distinctions need to 
be made, and in these cases:  

o the specific limb of the tree in which a variable occurs is described in the 
variable name, not in subscripts  

o the variable name should include all relevant node branch names  
o node branch names included in the variable name should be ordered as in 

their sequence in the limb of the tree, e.g. PrP_SJ_Breeder_Adult for the 
population proportion of Adults in a Breeder herd in South Jutland (where 
the sequence of nodes in the tree is COUNTY, FARM TYPE, AGE); NOT 
PrP_Adult_Breeder_SJ or any other sequence  

o underscores should be used to separate branch names within a variable 
name  

Examples of variable names which assume conditionality are:  

o SeU to denote unit-level sensitivity in a general discussion of how this 
variable should be used (for example, in calculating SeH); It is understood 
that different limbs of the tree may well have different values for SeU  

o PrSSC_Dairy to denote the proportion of herds processed in the SSC that 
are of type Dairy; it is understood that this may be different from one limb 
to another in the tree, the potential differences being apparent from the 
structure of the tree  

• The grouping level at which a variable applies is incorporated in the variable 
name, NOT as a subscript, e.g. SeH for herd-level sensitivity; this precedes any 
applicable names of node branches in the variable name, e.g. EPIH_Layer_Caged 
for the effective probability that a farm is infected for Caged HOUSING in the 
Layer COMPARTMENT  

• Subscripts are numerical indices, and are used for three purposes, depending on 
context:  

o as an index number for the individuals to which a variable name is 
applicable, e.g. SeHi for the herd-level sensitivity in the ith herd, in a 
context where multiple herds are being considered  

o as an index for the branch of a node to which a node-level variable name 
is applicable, e.g. PrPj for the population proportion of (herds) in county j, 
in a context where multiple branches of the COUNTY node are being 
considered  



o as an index denoting the time period to which the variable relates, in 
analysis of ongoing surveillance data split into successive time periods, 
e.g. PIntrotp for the probability of infection being introduced during time 
period tp.  

o a non-numeric subscript is also used in design prevalence notation (see 
below)  

• Double (or occasionally more) subscripts may be used, but only in contexts 
(formulae) where it aids comprehension to represent variables this way; e.g:  

 

where SeRj is the region-level sensitivity for the jth region; ARH_HTs is the adjusted risk 
for the sth herd type at the HERD TYPE risk node in the limb; P*

H is the herd-level 
design prevalence; SeHi,s is the herd-level sensitivity in the ith herd of type s; there are S 
herd types; there are ns herds of the sth herd type.  

In these situations, subscripts are separated by commas, and the first mentioned applies to 
the lowest-level unit or group. It is unlikely that time period indices will need to be mixed 
with branch or unit indices.  

Only occasionally is such notation going to aid comprehension, I think – it may make for 
conciseness, but not necessarily comprehension!  

Design prevalence 

Design prevalence is denoted P* with a subscript letter denoting the level to which it 
applies; typically P*

U for unit-level design prevalence, and P*
H for the herd-level design 

prevalence. P*
U, when specified as the only design prevalence, is the proportion of units 

in the population which are infected. When P*
H is also specified, P*

U is the proportion of 
units in an infected herd which are infected.  

Sensitivity notation 

• Within a component of a surveillance system (SSC), sensitivity at different 
grouping levels within the tree is denoted as explained above for variables in 
general (i.e. SeU; SeH; SeR etc., where U, H and R refer to different grouping 
levels, Unit, Herd and Region).  

• The sensitivity of a diagnostic test should be given an explanatory name (i.e. not 
just Se), for example ELISASe, to avoid confusion.  

• The sensitivity of the SSC is denoted CSe, the Component Sensitivity. Where 
multiple components are referred to, their sensitivities need to be named as in the 
variable name conventions above, e.g. CSeSERO for a SSC denoted SERO  

• The sensitivity of the whole surveillance system (potentially with multiple 
components) is denoted SSe, the System Sensitivity.  



• An actual CSe (i.e. based on the units actually processed) is generally referred to 
simply as CSe or CSeSERO, etc.; but when it needs to be distinguished from the 
CSe for a representative standard of the SSC, it is called CSe_Actual or 
CSeSERO_Actual, etc., and the representative standard CSe is then 
CSe_Representative, or CSeSERO_Representative, etc..  

• The same applies to actual and representative standard SSe.  

Probabilities 

Variables representing probabilities are named as described above (Variable Names), 
based on:  

• P (Probability), e.g. PSamples for the probability that samples are submitted; 
PIntro for the probability of infection being introduced.  

• PriorP for a Bayesian prior probability  
• PostP for a Bayesian posterior probability  
• EPI for an Effective Probability of Infection (i.e. design prevalence multiplied by 

applicable adjusted risks ), e.g. EPIUAdult for the effective probability that an 
Adult unit will be infected given that the herd/group is infected.  

Branch proportions 

Variable names are assigned as described above, based on:  

• Pr for Proportion  
• PrP for a proportion as found in the SSC reference population.  
• PrSSC for a proportion of units processed in the SSC.  

Risk nodes 

Relative risks as specified by the user (i.e. unadjusted for population proportions) are 
named as described above (Variable Names), based on RR (Relative Risk):  

• RRH for a relative risk applying to a herd-level infection node  
• RRU for a relative risk applying to a unit-level infection node  
• etc.  

Adjusted risks (weighted by population proportions) are named based on AR (Adjusted 
Risk), but otherwise exactly as for RR (i.e. ARH, etc.).  

Each branch of a risk category node used to capture population coverage will have 
associated with it a sensitivity weighting (probability of the branch being infected given 
that the population is infected) and these should be named (as above) based on SW (e.g. 
SWDairy for the weighting applied to the sensitivity of detection in the Dairy branch of a 
COMPARTMENT node).  



Stochastic modelling using @RISK 

In this project we are using Microsoft Excel and Palisade @RISK13 as the modeling 
software. The following notes are supplied for reference for those who are not familiar 
with the software.  

A few suggestions for spreadsheet modelling before we start:  

• Make your spreadsheet easy to follow, for yourself and others  
o formatting  
o labelling  
o comments  

• It is important to identify clearly model inputs and outputs  
o different colours are effective  

• name cells and ranges wherever appropriate  
o use Add output to name @RISK outputs  
o use RiskName() to name @RISK inputs  
o use Excel /Insert/Names/… to name all relevant cells and ranges, 

(including @RISK inputs and outputs) so that formulae are easily read.  

[13] Palisade Corporation: www.palisade.com.  

For those not familiar with @RISK: 

(This is not an @RISK manual – you will find one in your @RISK installation.) @RISK is 
an add-in for Microsoft Excel, providing the following additional functions within the 
Excel spreadsheet:  

• entry of probability distributions into spreadsheet cells. This is done using a range 
of functions giving access to about 40 probability distributions. With each 
recalculation of the spreadsheet a new value is drawn from each distribution in the 
spreadsheet, using Monte Carlo sampling.  

• simulation: you can perform simulations consisting of multiple iterations of the 
spreadsheet, where each iteration represents a recalculation of the spreadsheet, 
with associated resampling from probability distribution functions. @RISK will 
store all sampled values along with all calculated values for outputs, allowing  

• analysis and presentation of simulation results, including graphing and sensitivity 
analysis.  

@RISK provides new menus in Excel, new functions available through Excel’s Insert / 
Paste function dialog, and 2 new windows:  

• the @RISK model window is accessed via the Show @RISK Model window 
button on the @RISK toolbar  



• the @RISK results window is accessed via the Show @RISK Results window 
button on the @RISK toolbar.  

To get back to your spreadsheet from one of these windows, use Alt-Tab or the Show 
Excel window button on the toolbar; closing the Model window will shut down @RISK.  

Inputs and Outputs 

@RISK refers to any cell containing an @RISK distribution function as an input. Such 
functions may or may not be what you regard as inputs to your model, so you need to be 
careful of how this word input is used.  

@RISK outputs, on the other hand, must be specified. Unless you specify them, your 
model will have no outputs. You make a cell (or range) an output by selecting it and then 
clicking on the Add Output button on the @RISK toolbar. During simulation @RISK will 
then store values of outputs at each iteration, present you with a variety of statistics for 
the output’s frequency distribution, and give you access to a range of analytical options 
for the output.  

@RISK can also collect and store values for inputs from each iteration, but only when 
you tell it to. This is done in one of 2 ways:  

• On the Sampling tab of the Simulation settings dialog box, check All under 
Collect Distribution Samples. Data for all inputs will now be collected at each 
simulation. This is fine, but it slows things down and uses a lot of memory for 
large simulations.  

In general it is preferable to  

• check Inputs marked with Collect in the same dialog. Now you can specify which 
inputs you want data stored for. Hit the Display list of Inputs and Outputs button 
on the toolbar, and on the right hand side of the @RISK Model window check the 
Collect box for the inputs you want collected during simulation.  

Distribution functions 

There are many to choose from, and they are accessed through the Insert function dialog 
box in Excel (Paste function in some versions of Excel), by selecting the @RISK 

Distributions category of functions. These functions require you to specify standard 
distribution parameters (mean, standard deviation, binomial probability, etc.), but you can 
also use the functions found in the category @RISK distrib (Alt parms) . Here you will be 
asked for such things as percentiles of the distribution, allowing you to specify 
probability distributions by using these alternative parameters.  



To visualise sampling from the distributions you have specified each time you recalculate 
the spreadsheet, check Monte Carlo under Standard Recalc on the Sampling tab of the 
Simulation Settings dialog.  

@RISK statistics functions 

These are useful when you want to embed some summary statistic for a distribution 
(input or output) in your spreadsheet (e.g. the mean or 95th percentile of an output). 
You’ll find them through Insert/Paste function, under @RISK statistics. You can watch 
them converge during simulation if you check Update display on the Iterations tab of the 
Simulation Settings dialog. This setting updates the display for all cells at every iteration, 
and can be fun the first time you run a simulation; but thereafter it serves mainly to slow 
down the calculations. In general, leave it turned off.  

When you have run the simulation and have the required statistic in your spreadsheet cell, 
copy its value into the spreadsheet, otherwise you will lose it when you close the 
simulation file.  

Simulation files 

These files store all data and statistics etc from a simulation. In general there is no need to 
save such data unless the simulation took a long time to run, since it is easy to rerun the 
simulation. Of course the results will be slightly different unless you use the same 
random number seed (see Sampling tab of Simulation Settings dialog).  

Saving simulation results 

Click the Report Settings button on the @RISK toolbar to select a wide range of options 
for saving reports to Excel worksheets. A useful one-page summary for an output is 
obtained using Quick Output Report. Note the button in the bottom right of the dialog box 
giving the option to Generate Reports Now.  

Simulation settings 

For getting started:  

• Use 5,000 iterations  
• Use Latin Hypercube sampling.  
• Use a Fixed random generator seed. (Choose your own – default is 1.)  

Sensitivity analysis 

See the manual for how to use the Advanced sensitivity analysis facility in @RISK 4.5.2. 
Standard sensitivity analysis (less flexible, but useful and quick) ranks inputs marked for 



collection by their relative impact on the output, based on regression analysis or rank 
correlation. The tornado plot and sensitivities report are the standard output, and these are 
available after you have run your simulation (see Report Settings) as long as you marked 
relevant inputs with RiskCollect() as outlined above (Inputs and Outputs).  

Correlated inputs 

Where variables in your model are correlated and they are specified as @RISK input 
distributions, you can set appropriate levels of correlation among multiple inputs using 
the Define Correlation button on the toolbar in the @RISK Model window. First select 
the inputs to be correlated in the Explorer pane (left hand side) of the Model window, 
then hit the Define Correlation button. You are presented with a correlation matrix for 
your selected inputs, which will be saved into a new worksheet in your active workbook, 
called @RISK Correlations. New values for correlations may be entered into the Excel 
worksheet or into the Model window matrix. New inputs may be included in the matrix 
by dragging them across from the Explorer list in the Model window.  

Using PopTools for Stochastic 

Spreadsheet Simulation 

What is PopTools? 

From the PopTools web site: "PopTools is a versatile add-in for PC versions of Microsoft 
Excel (97, 2000 or XP) that facilitates analysis of matrix population models and 
simulation of stochastic processes. It was originally written to analyse ecological models, 
but has much broader application. It has been used for studies of population dynamics, 
financial modelling, calculation of bootstrap and resampling statistics, and can be used 
for preparing spreadsheet templates for teaching statistics.  

"When installed, PopTools adds a new menu item to Excel's main menu (see the slightly 
outdated screenshot), and also adds over a hundred new worksheet functions. The 
routines include array formulas for matrix decompositions (Cholesky, QR, singular 
values, LU), eigenanalysis (eigenvalues and real eigenvectors of square matrices) and 
formulas for generation of random variables (eg, Normal, binomial, gamma, exponential, 
Poisson, logNormal).  

"Also included in PopTools are routines for iterating spreadsheets. These make it possible 
to run Monte Carlo simulations, conduct randomisation tests (including the Mantel test) 
and calculate bootstrap statistics.  

"PopTools requires no programming knowledge, but to fully utilise the package you need 
some knowledge of matrix algebra, and some understanding of probability and statistics. 
It is therefore most suitable for those who have done some undergraduate statistics."  



Download PopTools 

PopTools can be downloaded here.  

Installing PopTools 

• Install the SOLVER add-in in Excel (Tools | Add-ins | Solver Add-in)  
• run the setup file downloaded from the web site. It will install the add-in and 

demonstration files, and register the PopTools.xla file with Excel. At the end of 
the installation process an XLS readme file will be launched.  

Setting up a scenario tree using PopTools 

To be completed  

Summary of relevant formulae 

To be completed  

The Australian Biosecurity CRC 

The Australian Biosecurity Cooperative Research Centre (ABCRC) supports research in 
three programmes:  

• Technologies to enhance detection  
• Ecology of emerging infectious diseases  
• Advanced surveillance systems  

Project 3.010R in the advanced surveillance systems program is entitled Quantification of 
confidence in disease freedom. The material presented in this booklet has been developed 
within this project, and the associated training workshops are presented by research 
workers in this project.  

Case Studies 

In addition to development and refinement of the methodology for evaluation of 
surveillance for disease freedom, four case studies are being conducted:  

1. Enzootic bovine leukosis in the Australian dairy industry (completed)  
2. Human poliomyelitis in Australia  
3. Bluetongue in the Australian free zone  
4. Bovine Johne’s disease in Western Australia  



Software 

Software for conducting scenario tree analysis of surveillance system components for 
disease freedom is being produced, and will be demonstrated during the course. The 
software will be freely accessible over the internet, and performs the following functions  

• Constructs a scenario tree from the user’s inputs  
o node types and names, branches and names, and sequence  
o branch probabilities, proportions and relative risks  

• Presents the tree in an expandable / collapsible and readily edited format  
• Presents graphical illustration of input and output probability / frequency 

distributions  
• Calculates SSC sensitivity using the stochastic modelling process described in 

section 9 above  
• Reports results of the analysis  

Extensions to the methodology 

In order to make the methodology as generally applicable as possible, the following are 
also addressed in the project:  

• Methods for eliciting, capturing and modelling expert opinion  
• Methods for dealing with semiquantitative and qualitative inputs  

International EpiLab in Denmark 

The methodology presented here was partly developed during the project visits of AC, 
TM and Mo Salman to the International EpiLab in Denmark. This Appendix gives a brief 
overview about this research centre and presents executive summaries of the research 
projects relevant to the topic of this course.  

General information 

The International EpiLab was established as an international research platform in 
veterinary epidemiology in Denmark in co-operation of the Danish Veterinary Institute 
with the Danish Veterinary and Food Administration, The Royal Veterinary and 
Agricultural University, the Danish Institute of Agricultural Sciences, the Danish Bacon 
and Meat Council, the Danish Cattle Federation and The Danish Poultry Council. The 
research network of International EpiLab also includes international guest scientists and 
an international advisory committee. Current research areas are documenting disease 
freedom, risk assessment for exotic diseases, epidemiological research in antimicrobial 
resistance, improved methods for herd classification, population demographics and 
disease transmission and animal health, animal welfare and medicine use. More on 
International EpiLab can be found under http://www.dfvf.dk/Default.asp?ID=9406.  



International EpiLab project 3 (CSF; Cameron)  

Documenting disease freedom in swine by combination of surveillance programmes 
using information from multiple non-survey-based sources.  

Project period 

1 July 2002 to 31 January 2003  

Funding 

Funded by the Directorate for Food, Fisheries and Agri Business under the Danish 
Ministry of Food, Agriculture and Fisheries, innovation law programme (93S-2465-Å02- 
01358). Co-funded by Danish Bacon and Meat Council.  

Project leader 

Kristen Barfod, Danish Bacon and Meat Council  

Project partners 

• Guest scientist: Angus Cameron , Australia  
• DBMC: Kristen Barfod  
• DVFA: Sten Mortensen  
• DVI: Sven Erik Jorsal, Mette M. Larsen, René Bødker, Anne Bruun, Matthias 

Greiner  
• Further co-workers: Evan Sergeant, Australia; Tony Martin (c/o International 

EpiLab)  

Executive summary 

The Agreement on Sanitary and Phytosanitary Measures (SPS agreement) of the World 
Trade Organisation requires that, in international trade, measures taken to protect animal, 
plant or human health should be based on scientific principles and not maintained in the 
absence of sufficient evidence. Countries support such measures by using science-based 
risk analysis, which in turn demands science-based assessment of the disease status (free 
or infected) of each of the trading partners. Traditionally, national disease status has been 
determined using structured cross-sectional surveys, which are generally difficult and 
expensive to implement. On-going surveillance may also be assessed by expert panels, 
but there are no accepted methods for quantifying either confidence in the surveillance 
process, or the probability of national disease freedom demonstrated thereby. This report 
presents a proposed framework and detailed methods for quantitative assessment of 
complex surveillance data from multiple sources, and an illustrative case study using 
evidence from three surveillance systems to demonstrate Denmark’s freedom from 



classical swine fever. The framework and its methodology have been developed jointly 
with other EpiLab theme 1 projects.  

Framework for analysis 
The scenario tree is proposed as the modelling format for analysis of surveillance systems 
under a null hypothesis of the country being infected at a level equal to or greater than 
specified design prevalences. A scenario tree is developed to represent all known 
significant factors influencing the probability that a unit in an infected population will be 
detected as infected. The conditional probabilities associated with each limb of the tree 
are then multiplied together to give the overall probability of each limb’s outcome, and 
these are summed for all branches with positive outcomes to give the probability that the 
whole surveillance process will have a positive outcome for a randomly chosen 
population unit, given that infection is present in the country (the system unit sensitivity).  

Independence and clustering models are described for analysis. Under the independence 
model, overall system sensitivity of detection is derived directly from system unit 
sensitivity, as the probability that one or more of the independent units processed would 
have positive surveillance outcomes, given an infected country. Under the clustering 
model, animals (and disease) are assumed to cluster in groups, and surveillance system 
sensitivity is calculated taking this into account, by stepwise aggregation of sensitivity at 
each grouping level in the tree.  

Surveillance processes give either complete or incomplete coverage of the population, 
and the sensitivity of a process with incomplete coverage must be adjusted for its 
representativeness of the population. This is achieved through calculation and use of a 
sensitivity ratio for the process; the ratio of its sensitivity to that of a truly representative 
surveillance process.  

The surveillance process’s sensitivity, Pr(≥1 positive unit | country infected), is the 
confidence level for the statistical test of the null hypothesis. If one has a prior estimate 
of P(country is free of disease), one can then use Bayesian inference to calculate a 
posterior estimate of this probability, given the negative surveillance results.  

Where multiple surveillance systems are available, the results of the analysis of each 
(whether they be survey-based or the result of scenario tree analysis) may be combined to 
produce an overall estimate of the confidence of the combined surveillance system.  

While this research has developed the framework for a practical methodology to analyse 
complex surveillance data sources, it has also identified a number of areas of further 
research which would enhance the methodology. These include 1) standardised, 
transparent and acceptable methods for eliciting expert opinion, 2) methods to adjust the 
value of information based on the time of collection, and 3) methods to account for the 
lack of independence between surveillance systems when calculating the combined 
confidence that surveillance systems provide.  



Case study: Classical Swine Fever in Denmark 
The methodology described above was used to analyse three different surveillance 
systems that provide evidence of Danish freedom from classical swine fever. The 
surveillance systems examined were:  

1. A structured CSF sero-surveillance system, based on the collection of blood 
samples at abattoirs. Sampling was targeted at adult animals, with differential 
sampling pressures for boars compared to sows, and for South Jutland compared 
to the rest of the country;  

2. Abattoir inspections (ante-mortem and post-mortem) routinely carried out at all 
abattoirs, primarily for food safety purposes; and  

3. Clinical surveillance based on farmer observation, and routine visits by 
veterinarians to farms.  

Each surveillance system was modelled using separate scenario trees, and estimates of 
the system confidence generated using stochastic modelling. Data sources used in the 
analysis included the Central Husbandry Register database, results of serological analysis 
of blood samples, abattoir slaughter records, and the VetStat drug prescription database 
(used as a proxy for veterinary visits). A number of parameters in each model were 
provided either by an expert informant, or through educated guesses.  

Analyses were performed using a number of different design prevalence combinations, to 
examine the impact of the assumptions under the null hypothesis. In addition, for each 
surveillance system, a parallel analysis was conducted based on a hypothetical fully 
representative system using the same surveillance approach. For instance, in the case of 
sero-surveillance, this involved conceptually sampling from the farm population (rather 
than targeted sampling from the abattoir population). For meat inspections, it was based 
on the theoretical examination of animals selected from the farm population.  

The results of analysis indicated that (not surprisingly) the estimated system sensitivity 
(or equivalently, confidence in the surveillance system) was very sensitive to the design 
prevalence assumptions under the null hypothesis. When reduced to a common period of 
one month’s worth of surveillance, and based on those values used in the study, the 
sensitivity of the sero-surveillance system was estimated as 26.37% with a 5th to 95th 
percentile range of 23.44% to 27.87%. The sensitivity for the meat inspection system was 
67.80% (39.46% to 90.34%) and for the clinical surveillance system was 93.80% 
(90.77% to 96.43%).  

The sensitivity ratio is the ratio of the sensitivity of the actual system, to the sensitivity of 
a theoretical fully representative system. It indicates the effect of targeting the system, 
and indicates if a system is more or less effective than random selection. The sensitivity 
ratio for the sero-surveillance system was 3.73, for the meat inspection system was 0.998 
and for the clinical surveillance system was 0.991. This indicates that the sero-
surveillance system was very well targeted and much more efficient that simple 
population sampling.  



The other two systems were essentially equivalent to representative population sampling. 
The combined sensitivity of the three surveillance systems was calculated providing a 
monthly confidence of 98.53%. If surveillance data over the period of one year were 
considered, the confidence would increase to essentially 100% (1 – (1´10-22)).  

The strength of evidence for freedom from CSF is undeniable, and sensitivity analysis 
shows that even if the confidence in one or more systems is greatly overestimated, the 
annual confidence in the combined surveillance system well exceeds international 
requirements. Nevertheless, it is recommended that further research be undertaken in this 
area, including the use of more formal methods to generate estimates from expert 
opinion, and the application of a proposed methodology to account for the lack of 
independence between surveillance systems.  

International EpiLab project 4 (HPAI; Martin)  

Documenting freedom from Highly Pathogenic Avian Influenza (HPAI) in Danish 
poultry.  

Project period 

1 July 2002 to 30 November 2002  

Funding 

Funded by the Directorate for Food, Fisheries and Agri Business under the Danish 
Ministry of Food, Agriculture and Fisheries, innovation law programme (93S-2465-Å02- 
01359). Co-funded by The Danish Poultry Council.  

Project leader 

Poul H. Jørgensen, DVI  

Project partners 

• Guest scientist: Tony Martin, Australia  
• DPC: Thorkil Ambrosen, Jacob Bo Christensen  
• DVFA: Hanne M. Hansen  
• DVI: Poul H. Jørgensen, Vibeke F. Jensen, Mette M. Larsen, René Bødker, Anne 

Bruun, Matthias Greiner  
• Further co-workers: Angus R. Cameron (c/o International EpiLab)  

Executive summary 

The SPS agreement of the WTO requires that, in international trade, measures taken to 
protect animal, plant or human health should be based on scientific principles and not 



maintained in the absence of sufficient evidence. Countries support such measures by 
using science-based risk analysis, which in turn demands science-based assessment of the 
disease status (free or infected) of each of the trading partners. Traditionally, national 
disease status has been determined using structured cross-sectional surveys, which are 
generally difficult, expensive, and ephemeral in their applicability. On-going surveillance 
may also be assessed by expert panels, but there are no accepted methods for quantifying 
either confidence in the surveillance process, or the probability of national disease 
freedom demonstrated thereby. This report presents a proposed framework and detailed 
methods for quantitative assessment of complex surveillance data from multiple sources, 
and an illustrative case study of the diagnostic surveillance process for HPAI in 
Denmark. The framework and its methodology have been developed jointly with other 
EpiLab theme 1 projects.  

Framework for analysis 
The scenario tree is proposed as the modelling format for analysis of surveillance systems 
under a null hypothesis of the country being infected at a level equal to or greater than 
specified design prevalences. A tree is developed using infection, category and detection 
nodes to represent all factors influencing the probability that a population unit will lead to 
a positive outcome of the surveillance process. The conditional probabilities associated 
with each limb of the tree are then multiplied together to give the overall probability of 
each limb’s outcome, and these are summed for all branches with positive outcomes to 
give the probability that the whole surveillance process will have a positive outcome for a 
randomly chosen population unit, given that infection is present in the country (the 
system unit sensitivity).  

Independence and clustering models are described for analysis. Under the independence 
model, overall system sensitivity of detection is derived directly from system unit 
sensitivity, as the probability that one or more of the independent units processed would 
have positive surveillance outcomes, given an infected country. Under the clustering 
model, animals (and disease) are assumed to cluster in groups, and surveillance system 
sensitivity is calculated taking this into account, by stepwise aggregation of sensitivity at 
each grouping level in the tree.  

Surveillance processes give either complete or incomplete coverage of the population, 
and the sensitivity of a process with incomplete coverage must be adjusted for its 
representativeness of the population. This is achieved through calculation and use of a 
sensitivity ratio for the process; the ratio of its sensitivity to that of a truly representative 
surveillance process.  

The surveillance process’s sensitivity, P(≥1 positive unit | country infected), is the 
confidence level for the statistical test of the null hypothesis. If one has a prior estimate 
of P(country is free of disease), one can then use Bayesian inference to calculate a 
posterior estimate of this probability, given the negative surveillance results.  

Case study – avian influenza in Denmark 
A case study is presented, which analyses the Danish poultry diagnostic surveillance 



process, applied to highly pathogenic avian influenza, which has never been recorded in 
Denmark. This surveillance process has complete coverage of the population. Existing 
data sets covering broiler batch mortality, dispensing of pharmaceuticals, veterinary 
consultation records and diagnostic laboratory records, are used to estimate values for 
key branch probabilities in the scenario tree model. These are supplemented where 
necessary with expert opinion. The tree is modelled stochastically to incorporate 
uncertainty of parameter estimates. The model’s surveillance unit is a house of 
commercial birds, or a flock of backyard birds. Information on numbers of backyard 
flocks was obtained from surveillance activities conducted during the Danish 2002 
Newcastle disease outbreak.  

Nodes included in the tree are Industry sector; Farm infected; House infected; High 
mortality; Farmer seeks diagnosis; Veterinarian sends samples to laboratory; Laboratory 
looks for viruses; Laboratory finds AI virus. Isolation of HPAI virus represents a positive 
outcome of the surveillance process.  

Given the comprehensive nature of the data available for broilers, the broiler industry 
section of the model is examined in greatest detail. It is analysed under assumptions of 
both independence (of units) and clustering, with only minor differences in results. 
Sensitivity of the diagnostic process applied to a single infected broiler house was 0.09 
(mean value). Applying the process to one rotation of broilers through each house in the 
country (663 batches) using the independence model, the probability that one or more 
will give a positive surveillance outcome (under the null hypothesis with design herd 
prevalence of 1%) was 0.24. Using the clustering model it was 0.23. Clustering was 
therefore ignored in calculation of the tree for all industry sectors. The unit sensitivity of 
the whole diagnostic surveillance process (i.e. the probability that a randomly chosen 
chicken flock will test positive when the country is infected at a design herd prevalence 
of 1%) was 0.00002. When applied to all 51,000 chicken flocks in Denmark, the 
probability that one or more will test positive is 0.71.  

Based on this result alone we do not have sufficient confidence to reject the null 
hypothesis that Denmark is infected with HPAI at a herd prevalence of 1% or more. 
However, continuous negative outcomes over time lead to accumulated confidence, and 
this can be encapsulated in a prior estimate of the probability that the country is free of 
HPAI (although the procedures for doing this rigorously are not defined here). If this is 
set at 90%, the calculated posterior estimate from this analysis of the diagnostic 
surveillance process is 97%.  

Sensitivity analysis demonstrates that system sensitivity of detection is most sensitive to 
the probability that the laboratory will look for viruses in submitted samples, and the 
probability that they will find HPAI if it is there. Next in importance is the probability 
that a veterinary consultant will send samples from investigations of high mortality to the 
laboratory for testing. This has clear but predictable implications for HPAI surveillance 
in Denmark: improvements in confidence are most easily obtained by conducting 
virological investigations on more samples from cases of high mortality.  
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Executive summary 

The International EpiLab in Denmark has initiated and funded a “disease freedom” 
research theme. The theme consists of three projects; each is related to a single livestock 
species: cattle, swine, and poultry. The aim of this theme is to develop and implement a 
standardized approach to assessing freedom from disease, using information from 
multiple non-survey-based sources. Three research teams were composed to address the 
specific objectives of this project. Each team was focusing on specific livestock species 
with the intention to combine the approaches and alternatives to address the national 
interest. This report is the first phase of the accomplishments of the bovine research team. 
Further consolidation and discussion of the other teams’ accomplishments will be 
presented in the near future.  

Data related to IBR surveillance were used in the first phase of this project. The 
evaluation of surveillance for IBR in Denmark was approached from two perspectives. 
First, the system was assessed relative to international requirements. Secondly, the 
system was examined for meeting the national needs for rapid detection of infected herds. 



The assessment involved the determination of the sensitivity of the surveillance system 
for detecting infected herds. The model can be expanded to include surveillance for other 
diseases in near future. Furthermore, the assessment methods and the application can be 
expanded to include certification for disease freedom.  

The probability of detecting at least one infected herd in the country if the herd 
prevalence for IBR is greater than or equal to 2 per 1000 is calculated for the 
international requirement using specific assumptions. The detailed methods are described 
in the project report. The numbers of herds that were used in this calculation were for 
beef herds 24355 (year 2000) and 25233 (year 2001), while the numbers of dairy herds 
were 13034 (year 2000) and 12003 (year 2001). The results indicate that the existing 
sampling scheme for dairy and beef populations is adequate to satisfy the international 
requirements. National disease detection needs (i.e. early detection of the infection) 
exceed the international requirements and require more intensive sampling. Therefore, no 
further sampling scheme options were explored for the international requirement.  

The surveillance to meet national requirements was evaluated under current sampling 
conditions and three alternative scenarios. The national objective for detecting a single 
infected herd as quickly as possible requires a much more intensive approach. The 
current implementation of the system can identify dairy herds within a reasonable period 
of time with desired accuracy largely because of the test characteristics and the number of 
bulk tank milk samples. The system is less likely to detect infected beef herds since 
surveillance in those herds depends solely on slaughter serological testing.  

The system can be adjusted to improve the efficiency of the surveillance. Modelling 
demonstrated that the efficiency of surveillance in dairy herds, which depends on bulk 
tank milk testing, would not be substantially decreased if the slaughter surveillance 
component was dropped. Beef surveillance can only be improved by increasing the 
number of herds that are tested. Modelling showed that targeted sampling during the 
critical winter season could increase the likelihood of detecting disease.  
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